Skip to main content

Advertisement

Log in

First-principles calculations of Mg2FeH6 under high pressures and hydrogen storage properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report on structural properties, elastic constants, mechanical and dynamical stabilities, electronic band structure, and hydrogen storage applications of Mg2FeH6 at zero and high-pressure effects. The work has been realized within the full-potential linearized augmented plane wave method. At zero pressure, the material under study is stable and has a ductile nature. The electronic structure of the material of interest is determined to be X-X wide direct band gap semiconductor with an energy of 1.88 eV. The hydrogen storage capacity wt (%) and the hydrogen desorption temperature are reported as 5.473 and 625.47 K respectively. The Debye temperature ϴD is recorded as 698 K using the elastic constants and about 775 K using the Gibbs calculations. Under high-pressure effect up to 80 GPa, the semiconductor still be an X-X semiconductor with an energy gap of 3.91 eV. The Debye temperature ϴD increases monotonically up to about 1120 K at 80 GPa when using the calculated elastic constants whereas the desorption temperature decreases from 650 to 0 K by increasing pressure from 0 to about 87 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data and materials were used for the research described in the article.

References

  1. Bogdanovic B, Reiser A, Schlichte K, Spliethoff B, Tesche B (2002) J Alloys Compd 345:77

    Article  CAS  Google Scholar 

  2. Urbanczyk R, Peinecke K, Peil S, Felderhoff M (2017) Int J Hydrog Energy 42:13818

    Article  CAS  Google Scholar 

  3. D’Entremont A, Corgnale C, Sulic M, Hardy B, Zidan R, Motyka T (2017) Int J Hydrog Energy 42:22518

    Article  Google Scholar 

  4. Witek K, Karczewski K, Karpowicz M, Polanski M (2018) Crystals 8:94

    Article  Google Scholar 

  5. Didisheim JJ, Zolliker P, Yvon K, Fischer P, Schefer J, Gubelmann M, Williams AF (1984) Inorg Chem 23:1953

    Article  CAS  Google Scholar 

  6. Brutti S, Farina L, Trequattrini F, Palumbo O, Reale P, Silvestri L, Panero S, Paolone A (2018) Energies 11:1952

    Article  Google Scholar 

  7. Retuerto M, Alonso JA, Martínez R, Jiménez-Villacorta F, Sánchez-Benítez J, Fernández-Díaz MT, Garcia-Ramos CA, Ruskov T (2015) Int J Hydrogen Energy 40:9306

    Article  CAS  Google Scholar 

  8. Lang J, Fritzche H, Asselli AAC, Huot J (2017) Int J Hydrogen Energy 42:3087

    Article  CAS  Google Scholar 

  9. Miwa K, Takagi S, Matsuo M, Orimo S-I (2013) J Phys Chem C 117:8014

    Article  CAS  Google Scholar 

  10. Chaudhary A-L, Dietzel S, Li H-W, Akiba E, Bergemann N, Pistidda C, Klassen T, Dornheim M (2017) Int J Hydrogen Energy 42:11422

    Article  CAS  Google Scholar 

  11. Leivaa DR, Zeponb G, Assellic AAC, Fruchartd D, Miragliad S, Ishikawab TT, Bottab WJ (2012) Int J Mat Res 103:9ID

    Article  Google Scholar 

  12. Crivello J-C, Denys RV, Dornheim M, Felderhoff M, Grant DM, Huot J, Jensen TR, de Jongh P, Latroche M, Walker GS et al (2016) Appl Phys A 122:85

    Article  Google Scholar 

  13. Urbanczyk R, Meggouh M, Moury R, Peinecke K, Peil S, Felderhoff M (2016) Appl Phys A 122:315

    Article  Google Scholar 

  14. Nicholson KM, Sholl DS (2014) Inorg Chem 53:11849

    Article  CAS  Google Scholar 

  15. Al S, Kurkcu C, Yamcicier C (2020) Int J Hydrogen Energy 45:30783

    Article  CAS  Google Scholar 

  16. Al S, Kurkcu C, Yamcicier C (2020) Int J Hydrogen Energy 45:4720

    Article  CAS  Google Scholar 

  17. Ziani H, Gueddim A, Bouarissa N, Gacem L (2021) Mater Sci Eng B 269:115154

    Article  CAS  Google Scholar 

  18. Daviau K, Lee KKM (2018) Crystals 8:217

    Article  Google Scholar 

  19. Benmakhlouf F, Bechiri A, Bouarissa N (2003) Solid-State Electron 47:1335

    Article  CAS  Google Scholar 

  20. Lukačević I, Kirin D (2010) Croat Chem Acta 83:15

    Google Scholar 

  21. Bouarissa N (2000) Mater Chem Phys 65:107

    Article  CAS  Google Scholar 

  22. Manjόn FJ, Errandonea D (2009) Phys Stat Sol B 246:9

    Article  Google Scholar 

  23. Saib S, Bouarissa N, Rodríguez-Hernández P, Muñoz A (2010) Eur Phys J B 73:185

    Article  CAS  Google Scholar 

  24. Mujica JA, Rubio A, Muñoz A, Needs RJ (2003) Rev Mod Phys 75:863

    Article  CAS  Google Scholar 

  25. Manjόn FJ, Errandonea D (1996) Phys Stat Sol B 198:389

    Article  Google Scholar 

  26. Boucenna M, Bouarissa N (2004) Mater Chem Phys 84:375

    Article  CAS  Google Scholar 

  27. Eremets M (1996) High pressure experimental methods. Oxford University Press, Oxford

    Google Scholar 

  28. Hemley RJ, Mao HK, Struzhkin VV (2005) J Synchrotron Radiat 12:135

    Article  CAS  Google Scholar 

  29. Bouarissa A, Gueddim A, Bouarissa N, Maghraoui-Meherzi H (2021) Mater Sci Eng B 263:114816

    Article  CAS  Google Scholar 

  30. Saib S, Bouarissa N (2006) Solid-State Electron 50:763

    Article  CAS  Google Scholar 

  31. Adachi S (2005) Properties of group-IV, III-V, and II-VI semiconductors. Wiley, Chichester

    Book  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  33. Kohn W, Sham L-J (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  34. Blaha R, Schwarz K, Madsen GKH, Kvasnicha D, Luitz J (2001) WIEN2K + An augmented plane wave + local orbitals program for calculating crystal properties. Techn Universitat, Wien, Austria

  35. Wu Z, Cohen RE (2006) Phys Rev B 73:235116

    Article  Google Scholar 

  36. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Article  Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  38. Kagdada HL, Dabhi SD, Jha PK (2018) Int J Hydrogen Energy 43:21724

    Article  CAS  Google Scholar 

  39. Gueddim A, Bouarissa N, Villesuzanne A (2009) Phys Scr 80:055702

    Article  Google Scholar 

  40. Zerroug S, Ali Sahraoui F, Bouarissa N (2009) Niiiinyo. Appl Phys A 97:345

    Article  CAS  Google Scholar 

  41. Kim K, Lambrecht WRL, Segall B (1996) Phys Rev B 53:16310

    Article  CAS  Google Scholar 

  42. Xiang-Rong C, Hu Cui-E Z, Zhao-Yi C Ling-Cang (2008) Chin Phys Lett. 25:1064

    Article  Google Scholar 

  43. Bouarissa N (2006) Mater Chem Phys 100:41

    Article  CAS  Google Scholar 

  44. Bouarissa N, Annane F (2002) Mater Sci Eng B 95:100

    Article  Google Scholar 

  45. Ackland GJ (2001) Rep Prog Phys 64:483 (and references therein)

    Article  CAS  Google Scholar 

  46. Aouina NY, Mezrag F, Boucenna M, El-Farra M, Bouarissa N (2005) Mater Sci Eng B 123:87

    Article  Google Scholar 

  47. Bouarissa N, Kassali K (2001) Phys Stat Sol (B) 228:663; Erratum Bouarissa N, Kassali K (2002) Phys Stat Sol (B) 231:294

  48. Levinshtein M, Rumyantsev S, Shur M (eds) (1999) Handbook Series on Semiconductor Parameters, vol 2. World Scientific, Singapore

    Google Scholar 

  49. Pugh SF (1954) Philos Mag J Sci 45:823

    Article  CAS  Google Scholar 

  50. Bouarissa N (2003) Mater Sci Eng B 100:280

    Article  Google Scholar 

  51. Bannikov VV, Shein IR, Al I (2007) Phys Status Solidi Rapid Res Lett 1:89

    Article  CAS  Google Scholar 

  52. Al S, Iyigor A (2020) Chem Phys Lett 743:137184

    Article  CAS  Google Scholar 

  53. Pettiifor DG (1992) J Mater Sci Technol 8:345

    Article  Google Scholar 

  54. Liu Y, Hu WC, Li D, Zeng XQ, Yang XJ (2012) Intermetallics 31:257

    Article  CAS  Google Scholar 

  55. Cohen ML, Chelikowsky JR (1989) Electronic structure and optical properties of semiconductors. Springer-Verlag, Berlin

  56. Martin RM (2004) Electronic structure: basic theory and practical methods. University Press, Cambridge

    Book  Google Scholar 

  57. Kassali K, Bouarissa N (2000) Microelectron Eng 54:277

    Article  CAS  Google Scholar 

  58. Bouarissa N (1998) Infrared Phys Technol 39:265

    Article  CAS  Google Scholar 

  59. Heriche H, Rouabah Z, Bouarissa N (2017) Int J Hydrogen Energy 42:9524

    Article  CAS  Google Scholar 

  60. Feng Z-Y, Zhang JM (2018) J Phys Chem Sol 114:240

    Article  CAS  Google Scholar 

  61. Gueddim A, Zerroug S, Bouarissa N (2013) J Lumin 135:243

    Article  CAS  Google Scholar 

  62. Bouarissa N (2002) Phys Stat Sol B 231:391

    Article  CAS  Google Scholar 

  63. Ley MB, Jepsen LH, Lee Y-S, Cho YW, Von Colbe JMB, Dornheim M, Rokni M, Jensen JO, Sloth M, Filinchuk Y (2014) Mater Today 17:122

    Article  CAS  Google Scholar 

  64. Møller KT, Jensen TR, Akiba E, Li HW (2017) Prog Nat Sci Mater Int 27:34

    Article  Google Scholar 

  65. Hirscher M, Yartys VA, Baricco M, Von Colbe JB, Blanchard D, Bowman RC Jr, Broom DP, Buckley CE, Chang F, Chen P (2020) J Alloys Compd 827:153548

    Article  CAS  Google Scholar 

  66. Jain IP, Jain P, Jain A (2010) J Alloys Compd 503:303

    Article  CAS  Google Scholar 

  67. Møller KT, Sheppard D, Ravnsbæk DB, Buckley CE, Akiba E, Li H-W, Jensen TR (2017) Energies 10:1645

    Article  Google Scholar 

  68. Baran A, Polanski M (2020) Materials (Basel) 13:3993

    Article  CAS  Google Scholar 

  69. Zeng Q, Su K, Zhang L, Xu Y, Cheng L, Yan X (2006) J Phys Chem Ref Data 35:1385e90

    Article  Google Scholar 

  70. Broom DP (2011) Hydrogen storage materials: the characterization of their storage properties. Springer

  71. Ullrich B, Bhowmick M, Xi H (2017) AIP Adv 7:045109

    Article  Google Scholar 

Download references

Funding

No details of any finding have been applicable.

Author information

Authors and Affiliations

Authors

Contributions

N. Bouarissa and A. Gueddim wrote the main manuscript text and H. Ziani prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to N. Bouarissa.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziani, H., Gueddim, A. & Bouarissa, N. First-principles calculations of Mg2FeH6 under high pressures and hydrogen storage properties. J Mol Model 29, 59 (2023). https://doi.org/10.1007/s00894-023-05463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05463-1

Keywords

Navigation