Skip to main content
Log in

Molecular engineering on D-π-A organic dyes with flavone-based different acceptors for highly efficient dye-sensitized solar cells using experimental and computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The improvement of new organic flavone-based donor-spacer-acceptor (D-π-A) type dye molecules of the 3-(4-hydroxypiperidin-2-yloxy)-7-hydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one (D1), 7-hydroxy-2-(3,4-dihydroxyphenyl)-3-(piperidin-4-yloxy)-4H-chromen-4-one (D2), and 3-((2-aminopyridin-4-yloxy)methoxy)-7-hydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one (D3) were successfully designed and synthesized for dye-sensitized solar cells (DSSCs).

Methods

Here, we discuss the synthesis of flavone compounds as well as their photophysical and electrochemical characterization. Using the Gaussian 09w software, the electronic structures and apsorption spectra have been calculated at the B3LYP, B3PW91, CAM-B3LYP, MPW1PW91, PBEPBE, and ωB97XD theory with the 6-311G(d,p) basis sets.

Results

The computed values of the D2 molecule ground state optimized HOMOs-LUMOs energy is well positioned for advantageous charge transfer (CT) into the semiconducting material (TiO2) as well as the electron injection process. With a high power conversion efficiency (PCE) of 3.46% (VOC = 0.718 V, JSC = 7.07 mA cm−2, and FF = 0.68), the D2 compound also demonstrated good photovoltaic (PV) properties.

Conclusion

These findings unequivocally demonstrate that altering the D-π-A metal-free organic material electron-withdrawing capacity is a useful strategy for enhancing the optical and electrical characteristics of the organic PV system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data and electronic materials available for Gaussian program.

References

  1. Nozik AJ, Miller J (2010) Introduction to solar photon conversion. Chem Rev 110(11):6443–6445

    Article  CAS  Google Scholar 

  2. Brédas JL, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42(11):1691–1699

    Article  Google Scholar 

  3. Graetzel M, Janssen RA, Mitzi DB, Sargent EH (2012) Materials interface engineering for solution-processed photovoltaics. Nature 488(7411):304–312

    Article  CAS  Google Scholar 

  4. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  5. Peic A, Staff D, Risbridger T, Menges B, Peter LM, Walker AB, Cameron PJ (2011) Real-time optical waveguide measurements of dye adsorption into nanocrystalline TiO2 films with relevance to dye-sensitized solar cells. J Phys Chem C 115(3):613–619

    Article  CAS  Google Scholar 

  6. Ning Z, Fu Y, Tian H (2010) Energy Environ Sci 3:1170

    Article  CAS  Google Scholar 

  7. Wang P, Zakeeruddin SM, Exnar I, Grätzel M (2002) High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun 24:2972–2973

    Article  Google Scholar 

  8. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2010) First-principles modeling of the adsorption geometry and electronic structure of Ru (II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J Phys Chem C 114(13):6054–6061

    Article  Google Scholar 

  9. Wang ZS, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19(8):1138–1141

    Article  CAS  Google Scholar 

  10. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27(5):783–785

    Article  CAS  Google Scholar 

  11. Liu B, Zhu W, Zhang Q, Wu W, Xu M, Ning Z, Xie Y, Tian H (2009) Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor-π-acceptor system. Chem Commun 13:1766–1768

    Article  Google Scholar 

  12. Zafer C, Kus M, Turkmen G, Dincalp H, Demic S, Kuban B, Teoman Y, Icli S (2007) New perylene derivative dyes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 91(5):427–431

    Article  CAS  Google Scholar 

  13. Ma X, Hua J, Wu W, Jin Y, Meng F, Zhan W, Tian H (2008) A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 64(2):345–350

    Article  CAS  Google Scholar 

  14. Hayashi S, Tanaka M, Hayashi H, Eu S, Umeyama T, Matano Y, Araki Y, Imahori H (2008) Naphthyl-fused π-elongated porphyrins for dye-sensitized TiO2 cells. J Phys Chem C 112(39):15576–15585

    Article  CAS  Google Scholar 

  15. Shen P, Liu Y, Huang X, Zhao B, Xiang N, Fei J, Liu L, Wang X, Huang H, Tan S (2009) Efficient triphenylamine dyes for solar cells: effects of alkyl-substituents and π-conjugated thiophene unit. Dyes Pigm 83(2):187–197

    Article  CAS  Google Scholar 

  16. Liu D, Zhao B, Shen P, Huang H, Liu L, Tan S (2009) Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Sci China Ser B Chem 52(8):1198–1209

    Article  CAS  Google Scholar 

  17. Pei K, Wu Y, Wu W, Zhang Q, Chen B, Tian H, Zhu W (2012) Constructing organic D-A-π-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment. Chem A Euro J 18(26):8190–8200

    Article  CAS  Google Scholar 

  18. Li X, Cui S, Wang D, Zhou Y, Zhou H, Hu Y, Liu JG, Long Y, Wu W, Hua J, Tian H (2014) New organic donor-acceptor-π-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation. Chemsuschem 7(10):2879–2888

    Article  CAS  Google Scholar 

  19. Chang DW, Lee HJ, Kim JH, Park SY, Park SM, Dai L, Baek JB (2011) Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells. Org Lett 13(15):3880–3883

    Article  CAS  Google Scholar 

  20. Cui Y, Wu Y, Lu X, Zhang X, Zhou G, Miapeh FB, Zhu W, Wang ZS (2011) Incorporating benzotriazole moiety to construct D-A-π-A organic sensitizers for solar cells: significant enhancement of open-circuit photovoltage with long alkyl group. Chem Mater 23(19):4394–4401

    Article  CAS  Google Scholar 

  21. Liu J, Liu B, Tang Y, Zhang W, Wu W, Xie Y, Zhu WH (2015) Highly efficient cosensitization of D-A-π-A benzotriazole organic dyes with porphyrin for panchromatic dye-sensitized solar cells. J Mater Chem C 3(42):11144–11150

    Article  CAS  Google Scholar 

  22. Hu X, Cai S, Tian G, Li X, Su J, Li J (2013) Rigid triarylamine-based D-A-π-A structural organic sensitizers for solar cells: the significant enhancement of open-circuit photovoltage with a long alkyl group. RSC Adv 3(44):22544–22553

    Article  CAS  Google Scholar 

  23. Li W, Wu Y, Zhang Q, Tian H, Zhu W (2012) D-A-π-A featured sensitizers bearing phthalimide and benzotriazole as auxiliary acceptor: effect on absorption and charge recombination dynamics in dye-sensitized solar cells. ACS Appl Mater Interfaces 4(3):1822–1830

    Article  CAS  Google Scholar 

  24. Hendsbee AD, McAfee SM, Sun JP, McCormick TM, Hill IG, Welch GC (2015) Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells. J Mater Chem C 3(34):8904–8915

    Article  CAS  Google Scholar 

  25. Huang ZS, Cai C, Zang XF, Iqbal Z, Zeng H, Kuang DB, Wang L, Meier H, Cao D (2015) Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs. J Mater Chem A 3(3):1333–1344

    Article  CAS  Google Scholar 

  26. Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C (2009) First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc 131(40):14290–14298

    Article  CAS  Google Scholar 

  27. Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42(2):326–334

    Article  CAS  Google Scholar 

  28. Barone V, Polimeno A (2007) Integrated computational strategies for UV/vis spectra of large molecules in solution. Chem Soc Rev 36(11):1724–1731

    Article  CAS  Google Scholar 

  29. Jamorski Jödicke C, Lüthi HP (2003) Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor-acceptor systems. J Am Chem Soc 125(1):252–264

    Article  Google Scholar 

  30. Jodicke CJ, Luthi HP (2002) Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor-acceptor systems. Part II J Chem Phys 117(9):4157–4167

    Article  Google Scholar 

  31. Preat J, Jacquemin D, Wathelet V, André JM, Perpète EA (2006) TD-DFT investigation of the UV spectra of pyranone derivatives. J Phys Chem A 110(26):8144–8150

    Article  CAS  Google Scholar 

  32. Gómez-Ortíz NM, Vázquez-Maldonado IA, Pérez-Espadas AR, Mena-Rejón GJ, Azamar-Barrios JA, Oskam G (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol Energy Mater Sol Cells 94(1):40–44

    Article  Google Scholar 

  33. Huamán AA, Celestino MR, Quintana ME (2021) Theoretical and experimental study of solar cells based on nanostructured films of TiO2 sensitized with natural dyes extracted from Zea mays and Bixa orellana. RSC Adv 11(16):9086–9097

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Revision D. 01, Gaussian Inc. Wallingford CT.

  35. Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140(18):18A301

    Article  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  37. Ren X, Li J, Holmes RJ, Djurovich PI, Forrest SR, Thompson ME (2004) Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices. Chem Mater 16(23):4743–4747

    Article  CAS  Google Scholar 

  38. Fan C, Wei Y, Ding D, Xu H (2015) Linkage engineering in hosts for dramatic efficiency enhancement of blue phosphorescent organic light-emitting diodes. Opt Exp 23(10):12887–12899

    Article  CAS  Google Scholar 

  39. Daeneke T, Kwon TH, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chem 3(3):211–215

    Article  CAS  Google Scholar 

  40. Bisquert J (2010) Theory of the impedance of charge transfer via surface states in dye-sensitized solar cells. J Electroanal Chem 646(1–2):43–51

    Article  CAS  Google Scholar 

  41. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83(22):8440–8441

    Article  CAS  Google Scholar 

  42. Solomon RV, Veerapandian P, Vedha SA, Venuvanalingam P (2012) Tuning nonlinear optical and optoelectronic properties of vinyl coupled triazene chromophores: a density functional theory and time-dependent density functional theory investigation. J Phys Chem A 116(18):4667–4677

    Article  CAS  Google Scholar 

  43. Gajalakshmi D, Solomon RV, Tamilmani V, Boobalan M, Venuvanalingam P (2015) A DFT/TDDFT mission to probe push-pull vinyl coupled thiophene oligomers for optoelectronic applications. RSC Adv 5(62):50353–50364

    Article  CAS  Google Scholar 

  44. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50(11):2981–2992

    Article  CAS  Google Scholar 

  45. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  46. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107(25):4973–4975

    Article  CAS  Google Scholar 

  47. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    Article  CAS  Google Scholar 

  48. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  49. Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun L, Mori S, Hagfeldt A (2010) How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26(4):2592–2598

    Article  CAS  Google Scholar 

  50. Rühle S, Greenshtein M, Chen SG, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J Phys Chem B 09(40):18907–18913

    Article  Google Scholar 

  51. Zhang J, Li HB, Sun SL, Geng Y, Wu Y, Su ZM (2012) Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J Mater Chem 22(2):568–576

    Article  CAS  Google Scholar 

  52. Preat J, Jacquemin D, Michaux C, Perpète EA (2010) Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem Phys 376(1–3):56–68

    Article  CAS  Google Scholar 

  53. Islam A, Sugihara H, Arakawa H (2003) Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J Photochem Photobiol A Chem 158(2–3):131–138

    Article  CAS  Google Scholar 

  54. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108(15):4818–4822

    Article  CAS  Google Scholar 

  55. Ning Z, Zhang Q, Wu W, Pei H, Liu BO, Tian HE (2008) Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J Org Chem 73(10):3791–3797

    Article  CAS  Google Scholar 

  56. Daeneke T, Mozer AJ, Uemura Y, Makuta S, Fekete M, Tachibana Y, Koumura N, Bach U, Spiccia L (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134(41):16925–16928

    Article  CAS  Google Scholar 

  57. Robson KC, Hu K, Meyer GJ, Berlinguette CP (2013) Atomic level resolution of dye regeneration in the dye-sensitized solar cell. J Am Chem Soc 135(5):1961–1971

    Article  CAS  Google Scholar 

  58. Liu Y, Yang G, Sun S, Su Z (2012) Density functional theory investigation on the second-order nonlinear optical properties of chlorobenzyl-o-carborane derivatives. Chinese J Chem 30(10):2349–2355

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Research Center for Advanced Materials Science (RCAMS), King Khalid University, Saudi Arabia, for funding this work under grant Number: RCAMS/KKU/020–22.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors (Arunkumar Ammasi, Ragavan Iruthayaraj, Anbarasan Ponnusamy Munusamy, and Mohd Shkir).

Corresponding authors

Correspondence to Arunkumar Ammasi or Anbarasan Ponnusamy Munusamy.

Ethics declarations

Ethics approval and consent to participate

This is not applicable.

Consent for publication

This is not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammasi, A., Iruthayaraj, R., Munusamy, A.P. et al. Molecular engineering on D-π-A organic dyes with flavone-based different acceptors for highly efficient dye-sensitized solar cells using experimental and computational study. J Mol Model 29, 45 (2023). https://doi.org/10.1007/s00894-023-05445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05445-3

Keywords

Navigation