Skip to main content
Log in

Theoretic measure and thermal properties of a standard Morse potential model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Since the proposition of the standard form of Morse potential \(\left({V}_{SM}\left(r\right)\right)\) model over the years, there has not been much attention on the potential. Its application to different studies such as the thermodynamic properties and information theory are yet to be reported to the best of our understanding. In this study, the solutions of the radial Schrödinger equation for the standard Morse potential is obtained using supersymmetric approach. The effect of the quantum number on the energy eigenvalue for the standard Morse potential is examined numerically for the hydrogen molecule (H2), lithium molecule (Li2), and potassium molecule (K2). Using the energy equation and the wave function obtained, the theoretic measures and thermodynamic properties of hydrogen, lithium, and potassium molecules are calculated via maple program. It has been shown that the energy of the standard Morse potential is fully bounded for the three molecules studied. A higher concentration of electron density corresponds to a strongly localized distribution in the position configuration. The Beckner, Bialynicki-Birula, and Mycieslki (BBM) inequality is satisfied for both the ground state and the first excited state. Finally, the product of uncertainty obtained obeyed the Heisenberg uncertainty relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used in the study are in the text.

References

  1. Falaye BJ, Oyewumi KJ, Ikhdair SM, Hamzavi M (2014) Eigensolution techniques, their applications and Fisherʼs information entropy of the Tietz-Wei diatomic molecular model. Phys Scr 89:115204

    Article  Google Scholar 

  2. Falaye BJ, Ikhdair SM, Hamzavi M (2015) Shifted Tietz-Wei oscillator for simulating the atomic interaction in diatomic molecules. J Theor Appl Phys 9:151–158

    Article  Google Scholar 

  3. Khordad R, Ghanbari A (2021) Theoretical prediction of thermal properties of K2 diatomic molecule using generalized Mobius square potential. Int J Thermophys 42:115

    Article  CAS  Google Scholar 

  4. Nasser I, Abdelmonem MS, Bohlouli H (2007) The rotating Morse potential model for diatomic molecules in the tridiagonal J-matrix representation: I. Bound states. J Phys B: Atomic Mol Opt Phys 40:4245

    Article  CAS  Google Scholar 

  5. Dong Q, Torres-Arenas AJ, Sun G-H, Camacho-Nieto O, SmainFemmam S-H (2019) Exact solutions of the sine hyperbolic type potential. J Math Chem 57:1924–1931

    Article  CAS  Google Scholar 

  6. Dong S, García-Ravelo J, Dong S-H (2007) Analytical approximations to the l-wave solutions of the Schrödinger equation with an exponential-type potential. Phys Scr 76:393–396

    Article  CAS  Google Scholar 

  7. Yahya WA, Issa K (2015) Approximate analytical solutions of the improved Tietz and improved Rosen-Morse potential models. Chin J Phys 53:060401–060411

    Google Scholar 

  8. Liu H-B, Yi L-Z, Jia C-S (2018) Solutions of the Klein-Gordon equation with the improved Tietz potential energy model. J Math Chem 56:2982–2994

    Article  CAS  Google Scholar 

  9. Oluwadare OJ, Oyewumi KJ (2018) Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential. Eur Phys J Plus 133:422

    Article  Google Scholar 

  10. Oyewumi KJ, Sen KD (2012) Exact solutions of the Schrödinger equation for the pseudoharmonic potential: an application to some diatomic molecules. J Math Chem 50:1039–1059

    Article  CAS  Google Scholar 

  11. Zhang L-H, LI X-P, Jia C-S (2011) Approximate solutions of the Schrodinger Equation with the generalized Morse potential model including the centrifugal term. Int J Quant Chem 111:1870–1878

    Article  CAS  Google Scholar 

  12. Zarezadeh M, Tavassoly MK (2013) Solution of the Schr¨odinger equation for a particular form of Morse potential using the Laplace transform. Chin Phys C 37(4):043106

    Article  CAS  Google Scholar 

  13. Jia C-S, Cao S-Y (2013) Molecular spinless energies of the Morse potential energy model. Bull Korean Chem Soc 34:3425

    Article  CAS  Google Scholar 

  14. Onate CA, Egharevba GO, Bankole DT (2021) Eigensolution to Morse potential for Scandium and Nitrogen monoiodides. J Nig Soc Phys Sci 3:282–286

    Article  Google Scholar 

  15. Chatterjee S, Ali G, Talukdar SB (2020) Fisher information for the Morse oscillator. Rep Math Phys 85:281–291

    Article  Google Scholar 

  16. Miraboutalebi S, Rajaei L (2014) Solutions of N-dimensional Schrὅdinger equation with Morse potential via Laplace transforms. J Math Chem 52:1119–1128

    Article  CAS  Google Scholar 

  17. Sun G-H, Dong S-H (2012) Morse potential in the momentum representation. Commun Theor Phys 58:815–818

    Article  Google Scholar 

  18. Dong S-H, Lemus R, Frank A (2002) Ladder operators for the Morse potential. Int J Quant Chem 86:433–439

    Article  CAS  Google Scholar 

  19. Du J-F, Guo P, Jia C-S (2014) D-dimensional energies for scandium monoiodide. J Math Chem 52:2559–2569

    Article  CAS  Google Scholar 

  20. Shui Z-W, Jia C-S (2017) Relativistic rotation-vibrational energies for the 107Ag 109Ag isotope. Eur Phys J Plus 132:292

    Article  Google Scholar 

  21. Taseli H (1998) Exact solutions for vibrational levels of the Morse potential. J Phys A: Math Gen 31:779–788

    Article  CAS  Google Scholar 

  22. Qiang W-C, Dong S-H (2007) Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term. Phys Lett A 368:13–17

    Article  CAS  Google Scholar 

  23. Dong S-H, Qiang W-C, Sun GH, Bezerra VB (2007) Analytical approximations to the l-wave solutions of the Schrodinger equation with the Eckart potential. J Phys A: Math Theor 40:10535–10540

    Article  Google Scholar 

  24. Greene RL, Aldrich C (1976) Variational wave functions for a screened Coulomb potential. Phys Rev A 14:2363

    Article  Google Scholar 

  25. Wei G-F, Dong S-H (2010) Pseudospin symmetry in the relativistic Manning-Rosen potential including a Pekeris-type approximation to the pseud-centrifugal term. Phys Lett B 686:288–292

    Article  CAS  Google Scholar 

  26. Wei G-F, Dong S-H (2010) A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Pὅschl-Teller potentials. Eur Phys J A 43:185–190

    Article  CAS  Google Scholar 

  27. Cooper F, Khare A, Sukhatme U (1995) Upersymmetry and quantum mechanics. Phys Rep 251:267

    Article  CAS  Google Scholar 

  28. Witten E (1981) Dynamical breaking of supersymmetry. Nucl Phys B 185:513

    Article  Google Scholar 

  29. Cooper F, Freeman B (1983) Aspects of supersymmetric quantum mechanics. Ann Phys 146:262

    Article  CAS  Google Scholar 

  30. Suna G-H, Aokia MA, Dong SH (2013) Quantum information entropies of the eigenstates for the Poschl–Teller-like potential. Chin Phys B 22:050302

    Article  Google Scholar 

  31. Sun G-H, Dong S-H (2013) Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen–Morse potential. Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen–Morse potential. Phys Scr 87:045003

    Article  CAS  Google Scholar 

  32. Valencia-Torres R, Sun G-H, Dong S-H (2015) Quantum information entropy for a hyperbolical potential function. Phys Scr 90:035205

    Article  Google Scholar 

  33. Sun G-H, Dusan P, Oscar C-N, Dong S-H (2015) Shannon information entropies for position-dependent mass Schrodinger problem with a hyperbolic well. Chin Phys B 24:100303

    Article  Google Scholar 

  34. Song X-D, Sun G-H, Dong S-H (2015) Shannon information entropy for an infinite circular well. Phys Lett A 379:1402–1408

    Article  CAS  Google Scholar 

  35. Olendski O (2021) Comparative analysis of information measures of the Dirichlet and Neumann two-dimensional quantum dots. Int J Quant Chem 121:e26455

    Article  CAS  Google Scholar 

  36. Olendski O (2019) Rényi and Tsallis entropies: three analytic examples. Eur J Phys 40:025402

    Article  Google Scholar 

  37. Peng X-L, Jiang R, Jia C-S, Zhang L-H, Zhao Y-L (2018) Gibbs free energy of gaseous phosphorus dimer. Chem Engen Scien 190:122–125

    Article  CAS  Google Scholar 

  38. Jia C-S, Zhang L-H, Peng X-L, Luo J-X, Zhao Y-L, Liu J-Y, Guo J-J, Tang L-D (2019) Prediction of entropy and Gibbs free energy for nitrogen. Chem Eng Sci 202:70–74

    Article  CAS  Google Scholar 

  39. Wang J, Jia C-S, Li C-J, Peng X-L, Zhang L-H, Liu J-Y (2019) Thermodynamic properties for carbon dioxide. ACS Omega 4:19193

    Article  CAS  Google Scholar 

  40. Jia C-S, Li J, Liu Y-S, Peng X-L, Jia X, Zhang L-H, Jiang R, Li X-P, Liua J-Y, Zhao Y-L (2020) Predictions of thermodynamic properties for hydrogen sulfide. J Mol Liquids 315:113751

    Article  CAS  Google Scholar 

  41. Liang D-C, Zeng R, Wang C-W, Ding Q-C, Wei L-S, Peng X-L, Liu J-Y, Yu J, Jia C-S (2022) Prediction of thermodynamic properties for sulfur dioxide. J Mol Liquids 352:118722

    Article  CAS  Google Scholar 

  42. Abu-Shady M, Khokha EM (2022) On prediction of the fractional vibrational energies for diatomic molecules with the improved Tietz potential. Mol Phys 120:e2140720. https://doi.org/10.1080/00268976.2022.2140720

    Article  CAS  Google Scholar 

  43. Wang C-W, Peng X-L, Liu J-Y, Jiang R, Li X-P, Liu Y-S, Liu S-Y, Wei L-S, Zhang L-H, Jia C-S (2022) A novel formulation representation of the equilibrium constant for water gas shift reaction. Int J Hydrogen Energy 47:27821–27838

    Article  CAS  Google Scholar 

  44. Wang C-W, Wang J, Liu Y-S, Li J, Peng X-L, Jia C-S, Zhang L-H, Yi L-Z, Liu J-Y, Li C-J, Jia X (2021) Prediction of the ideal-gas thermodynamic properties for water. J Mol Liquids 321:114912

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Formulation of the work: C.A. Onate. Calculations: C.A. Onate and E. Omugbe. Introduction: I.B. Okon and U.E. Vincent. Editing: M.C. Onyeaju. Numerical results/plotting: I.B. Okon and E.S. Eyube. Discussion of results: G.O. Jude.

Corresponding author

Correspondence to C. A. Onate.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onate, C.A., Okon, I.B., Vincent, U.E. et al. Theoretic measure and thermal properties of a standard Morse potential model. J Mol Model 29, 34 (2023). https://doi.org/10.1007/s00894-022-05441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05441-z

Keywords

Navigation