Skip to main content

Advertisement

Log in

Effects of pressure on structural, electronic, optical, and mechanical properties of nitrogen-rich energetic material: 6-azido-8-nitrotetrazolo[1,5-b]pyridazine-7-amine (3at)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context and results

6-Azido-8-nitrotetrazolo[1,5-b]pyridazine-7-amine (3at) is a promising green energetic material, which meets the development requirements of environment-friendly explosives. By discussing the relationship between lattice parameters and pressure, it is found that the compression ratio indicates anisotropy of compressibility. And bond lengths get shorter under pressure, resulting in stronger intermolecular bonds. The N3 group rotates under pressure. And then, the optical properties basically change regularly with the change of pressure. As the pressure increases, the absorption range widens. In the low energy interval, it shows transparency, and then with the increase of energy and pressure, it shows better optical activity. With the increase of pressure and energy, the absorption coefficient increases, representing that the optical activity becomes high. Finally, according to the analysis of mechanical properties, 3at exhibited brittle behavior at 0 GPa and 100 GPa, while at 10 to 90 GPa, the values of ν and B/G are malleable.

Computational and theoretical techniques

Based on density functional theory, the crystal parameters, electronic properties, optical properties, and elastic and mechanical properties of 3at under different pressures were studied theoretically. The GGA-PW91+OBS method was used to calculate the physical parameters under pressure, such as lattice parameters, energy band structures, dielectric function, refractive index, absorption coefficient, and elastic constants. Physical properties under (3at) pressure are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is available on request from the authors.

Code availability

N/A.

References

  1. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187

    Article  CAS  Google Scholar 

  2. Liu WH, Liu QJ, Zhong M, Gan YD, Liu FS, Li XH, Tang B (2022) Acta Mater 236:118137

    Article  CAS  Google Scholar 

  3. Liu Y, He P, Gong LS, Mo XF, Zhang JG (2021) RSC Adv 11:27420

    Article  CAS  Google Scholar 

  4. Manzoor S, Tariq Q, Yin X, Zhang JG (2021) Defence Technol 17:1995

    Article  Google Scholar 

  5. Yan TG, Yang HW, Cheng GB, Appl ACS (2020) Energy Mater 3:6492

    CAS  Google Scholar 

  6. Qian L, Yang HW, Xiong HL, Gu H, Tang J, Xue YB, Cheng GB (2020) Energetic Mater Front 1:74

    Article  Google Scholar 

  7. Zhang GJ, Hu W, Ma JC, Yang HW, Cheng GB (2021) Chem Eng J 426:131297

    Article  CAS  Google Scholar 

  8. Zhang JH, Zhang QH, Vo TT, Parrish DA, Shreeve JM (2015) J Am Chem Soc 137:1697

    Article  CAS  Google Scholar 

  9. Luo SN, Gozin M (2020) Eng 6:974

    Article  Google Scholar 

  10. Zeman S, Jungov M (2016) Propellants Explos Pyrotech 41:426

    Article  CAS  Google Scholar 

  11. Yu CP, Zhang WC, Xian MC, Chen JH, Shi W, Wang JX, Yang GX, Gu BN, Ye JH, Ma KF, Zhu JW (2022) Chem Eng J 450:13813

    Google Scholar 

  12. Walley SM, Field JE, Greenaway MW (2006) Mater Sci Technol 22:402

    Article  CAS  Google Scholar 

  13. Dreizin EL (2009) Prog Energy Combust Sci 35:141

    Article  CAS  Google Scholar 

  14. Jiang CL, Wang A, Zhao F, Shang SL, Zhang MJ, Liu FS, Liu QJ (2019) Acta Phys Sin 68:228301

    Article  Google Scholar 

  15. Cheng YF, Chen X, Yang N, Zhang YZ, Ma HX, Guo ZQ (2021) CrystEngComm 23:1953

    Article  CAS  Google Scholar 

  16. Wurzenberger MHH, Gruhne MS, Lommel M, Stierstorfer J (2021) Propellants Explos Pyrotech 46:207

    Article  CAS  Google Scholar 

  17. Politzer P, Murray JS (2014) Adv Quantum Chem 69:1

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS (2016) Propellants Explos Pyrotech 41:414

    Article  CAS  Google Scholar 

  19. Li SJ, Bu RP, Gou RJ, Zhang CY (2021) Cryst Growth Des 21:6619

    Article  CAS  Google Scholar 

  20. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) J Hazard Mater 161:589

    Article  CAS  Google Scholar 

  21. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) J Hazard Mater 151:289

    Article  CAS  Google Scholar 

  22. Li G, Zhang CY (2020) J Hazard Mater 398:122910

    Article  CAS  Google Scholar 

  23. Wang FP, Du GY, Liu XC, Shao MY, Zhang CG, Chen L (2022) Nanotechnol Rev 11:2141

    Article  CAS  Google Scholar 

  24. Klapötke TM, Sabaté CM (2008) Chem Mater 20:1750

    Article  Google Scholar 

  25. Yin ZY, Huang W, Chinnam AK, Shreeve JM, Tang YX (2021) Chem Eng J 415:128990

    Article  CAS  Google Scholar 

  26. Klapotke TM, Schmid PC, Schnell S, Stierstorfer J (2015) J Mater Chem A 3:2658

    Article  Google Scholar 

  27. Hiskey MA, Goldman N, Stine JR (1998) J Energ Mater 16:119

    Article  CAS  Google Scholar 

  28. Wurzenberger MHH, Lommel M, Gruhne MS, Szimhardt N, Stierstorfer J (2020) Angew Chem Int Ed 59:12367

    Article  CAS  Google Scholar 

  29. Zheng Y, Qi XJ, Chen ST, Song SW, Zhang YP, Wang KG, Zhang QH, Appl ACS (2021) Mater Interfaces 13:28390

    Article  CAS  Google Scholar 

  30. Liu Y, Xu YG, Yang F, Dong Z, Sun Q, Ding LJ, Lu M (2020) Cryst Growth Des 20:6084

    Article  CAS  Google Scholar 

  31. Hu L, Staples RJ, Shreeve JM (2021) Chem Eng J 420:129839

    Article  CAS  Google Scholar 

  32. Feng SB, Yin P, He CL, Pang SP, Shreeve JM (2021) J Mater Chem A 9(20):12291

    Article  CAS  Google Scholar 

  33. Chen ST, Jin YH, Xia HL, Wang KC, Liu YJ, Zhang QH (2020) Energetic Mater Front 1:16

    Article  Google Scholar 

  34. Benz M, Klapötke TM, Stierstorfer J (2022) Org Lett 24:1747

    Article  CAS  Google Scholar 

  35. Yin ZY, Huang W, Tang YX (2021) Propellants Explos Pyrotech 46:1150

    Article  CAS  Google Scholar 

  36. Chen ST, Zhang WQ, Wang Y, Zhang QH (2021) Chem Eng J 421:129635

    Article  CAS  Google Scholar 

  37. Herweyer D, Brusso JL, Murugesu M (2021) New J Chem 45:10150

    Article  CAS  Google Scholar 

  38. Schulze MC, Scottb BL, Chavez DE (2015) J Mater Chem A 3(35):17963

    Article  CAS  Google Scholar 

  39. Qu YY, Babailov SP (2018) J Mater Chem A 6:1915

    Article  CAS  Google Scholar 

  40. Lai Q, Fei T, Yin P, Shreeve JM (2021) Chem Eng J 410:128148

    Article  CAS  Google Scholar 

  41. Huang W, Tang YX, Imler GH, Parrish DA, Shreeve JM (2020) J Am Chem Soc 142:3652

    Article  CAS  Google Scholar 

  42. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) Z für Kristallogr - Cryst Mater 220:567

    Article  CAS  Google Scholar 

  43. Appalakondaiah S, Vaitheeswaran G, Lebegue S, Christensen NE, Svane A (2012) Phys Rev B 86:035105

    Article  Google Scholar 

  44. Hu T, Hu MM, Li ZJ, Zhang H, Zhang C, Wang JY, Wang XH (2016) Phys Chem Chem Phys 18(30):20256

    Article  CAS  Google Scholar 

  45. Liu Y, Zhao JJ, Li FY, Chen ZF (2013) J Comput Chem 34:121

    Article  Google Scholar 

  46. Mao HK, Hemley RJ, Fei Y, Shu JF, Chen LC, Jephcoat AP, Wu Y (1991) J Geophys Res 96(B5):8069

    Article  CAS  Google Scholar 

  47. Kotakoski J, Albe K (2008) Phys Rev B 77:144109

    Article  Google Scholar 

  48. Ma ZY, Zuo J, Wang P, Shi CL (2019) Chin J Phys 59:317

    Article  CAS  Google Scholar 

  49. Gao J, Zeng W, Tang B, Zhong M, Liu QJ (2021) Mater Sci Semicond Process 121:105447

    Article  CAS  Google Scholar 

  50. Zhong M, Zeng W, Liu FS, Fan DH, Tang B, Liu QJ (2022) Mater Today Phys 22:100583

    Article  CAS  Google Scholar 

  51. Ainsworth RI, Tommaso DD, de Leeuw NH (2011) J Chem Phys 135(23):234513

    Article  Google Scholar 

  52. Gao J, Liu QJ, Jiang CL, Fan DH, Zhang M, Liu FS, Tang B (2022) Chin J High Pressure Phys 36:051101

    Google Scholar 

  53. Pugh SF (1954) Phil Mag 45:823

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12072299), the Sichuan Science and Technology Development Project (Grant No. 2021ZYD0027), and the Original Scientific Research Instrument and Equipment Development Project of Southwest Jiaotong University (Grant No. XJ2021KJZK055).

Author information

Authors and Affiliations

Authors

Contributions

Hong-Yan Li: data curation, formal analysis, investigation, and writing—original draft.

Ding Wei: conceptualization.

Yi-Hua Du: methodology and writing—review and editing.

Zheng-Tang Liu: methodology and software.

Zhi-Xin Bai: conceptualization, investigation, supervision, and writing—review and editing.

Fu-Sheng Liu: conceptualization, investigation, and supervision.

Qi-Jun Liu: conceptualization, investigation, resources, and writing—review and editing.

Corresponding authors

Correspondence to Zhi-Xin Bai, Fu-Sheng Liu or Qi-Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

On behalf of, and having obtained permission from, all the authors, I declare the following:

The material has not been published in whole or in part elsewhere.

The paper is not currently being considered for publication elsewhere.

All authors have been personally and actively involved in substantive work leading to the report and will hold themselves jointly and individually responsible for its content.

All relevant ethical safeguards have been met in relation to patient or subject protection or animal experimentation.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HY., Wei, D., Du, YH. et al. Effects of pressure on structural, electronic, optical, and mechanical properties of nitrogen-rich energetic material: 6-azido-8-nitrotetrazolo[1,5-b]pyridazine-7-amine (3at). J Mol Model 29, 43 (2023). https://doi.org/10.1007/s00894-022-05440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05440-0

Keywords

Navigation