Skip to main content

Advertisement

Log in

A comprehensive correlated analysis of Ra-Doped (ZnO2, ZnO) for optoelectronic applications: a first-principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Zinc oxide (ZnO) exhibits bulk-like behavior and is modified by radium doping to attain favorable electronic properties. The elastic and mechanical response of ZnO2 is much more favorable than ZnO material. The change in thermal expansion, Debye temperature, free energy, entropy, and specific heat leads it to be a good candidate for thermodynamic applications at low and high temperatures. Optical properties like dielectric function, absorption, refraction, reflection, and refractive index obtained after suitable doping transform the material as optically active. ZnO2 has low reflectivity and zero absorption below the electronic band gap as compared to ZnO in a wider spectral range. Our analyses on doped ZnO2 and ZnO make us confident for a wide range of applications in optoelectronic and anti-bacterial treatment in biomedical devices. Especially due to high flexibility and high light transmission, ZnO2 is an excellent applicant for transparent electrodes.

Methods

Density functional theory has been employed in consistency with generalized gradient approximation (GGA) with PBEsol to analyze the structural, electronic, elastic, mechanical, thermodynamic, and optical response of pure and Ra-doped (ZnO2 and ZnO) materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BS:

Band structure

PDOS:

Partial density of state

CB:

Conduction band

VB:

Valence band

TDOS:

Total density of state

EPDOS:

Elemental partial density of state

DF:

Dielectric function

RI:

Refractive index

References

  1. Wu Y, Arwa ALH, Farhan ZA, Alkhalifah T (2022) Enhanced artificial intelligence for electrochemical sensors in monitoring and removing of azo dyes and food colorant substances. Food Chem Toxicol 169:113398

  2. Pervez MN, Hossain MY, Talukder ME (2022) Nanomaterial-based smart and sustainable protective textiles. Protective textiles from natural resources. Elsevier, pp 75–111

  3. Sharwani AA, Narayanan KB, Khan ME (2022) Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ ZnO) nanocomposites under simulated solar light irradiation. Sci Rep 12(1):1–18

  4. El-Ghwas DE, Al-Nasser AS, Zamil GA (2022) Zinc oxide nanoparticles bacterial synthesis and application. Res J Pharm Technol 15(1):471–480

    Article  Google Scholar 

  5. Rafeeq H, Hussain A, Ambreen A, Waqas M (2022) Functionalized nanoparticles and their environmental remediation potential: a review. J Nanostructure Chem 12:1–25

  6. Hao L, Kamboh MA, Su Y, Wang L, Wang S (2022) First-principles study of electronic states, optical properties, water adsorption and dissociation properties of Pt-doped two-dimensional ZnO. Mater Sci Eng B 286:116019

  7. Naghavi SS (2022) Theoretical study of correlated systems using hybrid functionals. Appl Surf Sci 604:154620

  8. Königstein M, Catlow CRA (1998) Ab initioquantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides. J Solid State Chem 140(1):103–115

    Article  Google Scholar 

  9. Königstein M, Sokol AA, Catlow CRA (1999) Electronic structure and bonding in crystalline peroxides. Phys Rev B 60(7):4594

    Article  Google Scholar 

  10. Thapa R, Ghosh S, Sinthika S, Kumar EM (2015) Magnetic, elastic and optical properties of zinc peroxide (ZnO2): first principles study. J Alloy Compd 620:156–163

  11. Feng S, Liu J, Chen J, Su L, Guo F, Tang C (2022) First-principles study on electronic and optical properties of van der Waals heterostructures stacked by g-ZnO and Janus-WSSe monolayers. Appl Surf Sci 604:154620

  12. Chen W, Lu YH, Wang M, Kroner L, Paul H (2009) Synthesis, thermal stability and properties of ZnO2 nanoparticles. J Phys Chem C 113(4):1320–1324

  13. Oba F, Togo A, Tanaka I, Paier J, Kresse G (2008) Defect energetics in ZnO: a hybrid Hartree-Fock density functional study. Phys Rev B 77(24):245202

  14. Sharma A, Hosseini-Bandegharaei A, Kumar N (2022) Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: an in-depth review. J CO2 Util 65:102205

  15. Verma N, Jagota V, Alguno AC, Rakhra M (2022) Morphological, structural, and optical properties of doped/codoped ZnO nanocrystals film prepared by spin coating technique and their gas sensing application. J Nanomat 2022:1–10

  16. Rahman M, Kamruzzaman M, Zapien JA (2022) Conversion of n-type to p-type conductivity in ZnO by incorporation of Ag and Ag-Li. Mat Today Commun 33:104278

  17. Stampfl C, Van de Walle CG (1999) Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation. Phys Rev B 59(8):5521

    Article  CAS  Google Scholar 

  18. Söderlind P, Eriksson O, Johansson B, Wills JM (1994) Electronic properties of f-electron metals using the generalized gradient approximation. Phys Rev B 50(11):7291

  19. Hssain AH, Bulut N, Ates T, Koytepe S (2022) Experimental characterization and theoretical investigation of Zn/Sm co-doped hydroxyapatites. Mater Today Commun 31:103850

  20. Perenlei G, Alarco JA, Talbot PC (2015) Electronic structure studies and photocatalytic properties of cubic Bi1. 5ZnNb1. 5O7. Int J Photoenergy 2015:1

  21. Nishat M, Islam R, Rahman MA (2019) Investigation of the effect of 3d TM-TM atom co-doped in graphene nanosheet: Materials Research Express 6(12):126105

  22. Cho J, Sarangi R, Annaraj J, Kim SY, Kubo M (2009) Geometric and electronic structure and reactivity of a mononuclear ‘side-on’nickel (III)–peroxo complex. Nat Chem 1(7):568–572

  23. Kisi E (1994) Rietveld analysis of powder diffraction patterns. In: materials forum. J Alloys Compd 2019(793):499–504

  24. Nor NUM, Mazalan E, Risko C, Crocker M (2022) Unveiling the structural, electronic, and optical effects of carbon-doping on multi-layer anatase TiO2 (1 0 1) and the impact on photocatalysis. Appl Surf Sci 586:152641

  25. Rössler N, Kotsis K, Staemmler V (2006) Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO. Phys Chem Chem Phys 8(6):697–706

    Article  Google Scholar 

  26. Li W, Walther CFJ, Kuc A, Heine T (2013) Density functional theory and beyond for band-gap screening: performance for transition-metal oxides and dichalcogenides. J Chem Theory Comput 9(7):2950–2958

  27. White TI (2008) In defense of dolphins: the new moral frontier. Wiley

    Google Scholar 

  28. Iqbal MW, Ateeq H, Marriam A, Manzoor M (2022) Experimental and theoretical insights into electronic properties of oxygen-doped MoTe2 field effect transistor. Microelectron Eng 265:111885

  29. Carvalho A, Alkauskas A, Pasquarello A, Tagantsev AK (2009) A hybrid density functional study of lithium in ZnO: stability, ionization levels, and diffusion. Phys Rev B 80(19):195205

  30. Cao S, Zou H, Jiang B, Li M, Yuan Q (2022) Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor. Nano Energy 102:107635

  31. Barbaros I, Yang Y, Safaei B, Yang Z, Qin Z (2022) State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials. Nanotechnol Rev 11(1):321–371

  32. Born M, Huang K, Lax M (1955) Dynamical theory of crystal lattices. Am J Phys 23(7):474–474

    Article  Google Scholar 

  33. Schreiber E, Anderson OL, Soga N, Bell JF (1975) Elastic constants and their measurement. J App Mech 42:747

  34. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc. Sect A 65(5):349

  35. Ullah H, Kayani FS, Khenata R (2019) Insight into the mechanical, thermal, electronic and magnetic properties of cubic lanthanide built perovskites oxides PrXO3 (X= Al, Ga). Mater Res Exp 6(12):126105

    Article  CAS  Google Scholar 

  36. Singh S, Kumar R (2017) Ab-initio calculations of elastic constants and thermodynamic properties of LuAuPb and YAuPb half-heusler compounds. J Alloy Compd 722:544–548

    Article  CAS  Google Scholar 

  37. Cheng H-C, Yu C-F, Chen W-H (2013) First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J Alloy Compd 546:286–295

    Article  CAS  Google Scholar 

  38. Yalameha S, Vaez A (2019) Structural, electronic, elastic and thermodynamic properties of Al1-xZxNi (Z= Cr, V and x= 0, 0.125, 0.25) alloys: first-principle calculations. Comput Condensed Matt 21:e00415

    Article  Google Scholar 

  39. Mayer B, Anton H, Bott E, Methfessel M, Sticht J (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11(1):23–32

  40. Tian LI, Zhou D, You-rui-ling YAN, Ping P (2021) First-principles and experimental investigations on ductility/brittleness of intermetallic compounds and joint properties in steel/aluminum laser welding. Transac Nonferrous Met Soc China 31(10):2962–2977

  41. Rahman MA, Rahman MA, Sarker AR (2022) Synthesis, characterization and pressure effect on structural and mechanical properties of MgBi2O6: Solid-State Route and DFT Study 604:154620

  42. Shinde PV, Tripathi A, Thapa R, Rout CS (2022) Nanoribbons of 2D materials: a review on emerging trends, recent developments and future perspectives. Coord Chem Rev 453:214335

  43. Rodrigues J et al (2020) Optical properties of hydrothermally synthesised and thermally annealed ZnO/ZnO2 composites. Phys Chem Chem Phys 22(16):8572–8584

  44. Tan JC, Cheetham AK (2011) Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem Soc Rev 40(2):1059–1080

    Article  CAS  Google Scholar 

  45. Guziewski M (2018) Multiscale study of the pearlitic microstructure in carbon steels: atomistic investigation and continuum modeling of iron and iron-carbide interfaces. Colorado State University

    Google Scholar 

  46. Erhart P, Juslin N, Goy O, Nordlund K (2006) Analytic bond-order potential for atomistic simulations of zinc oxide. J Phys: Condens Matter 18(29):6585

  47. Mears D, Pae K, Sauer J (1969) Effects of hydrostatic pressure on the mechanical behavior of polyethylene and polypropylene. J Appl Phys 40(11):4229–4237

    Article  CAS  Google Scholar 

  48. Biskri ZE, Rached H, Bouchear M, Rached D (2016) A comparative study of structural stability and mechanical and optical properties of fluorapatite (Ca5 (PO4) 3F) and lithium disilicate (Li2Si2O5) components forming dental glass–ceramics: first principles study. J Electron Mater 45(10):5082–5095

  49. Zhao Y, Li H, Huang Y (2021) The structure, mechanical, electronic and thermodynamic properties of bcc Zr-Nb alloy: a first principles study. J Alloy Compd 862:158029

    Article  CAS  Google Scholar 

  50. Mariappan SM, Shkir M, Alshahrani T (2021) Insight on the optoelectronics and enhanced dielectric properties of strontium decorated PbI2 nanosheets for hot carrier solar cell applications. J Alloy Compd 859:157762

  51. Qadr RA, Saber DR, Aziz SB (2022) Theoretical investigations of electronic and optical properties of vanadium doped wurtzite zinc oxide from first principle calculation method Iraqi. J Phys 20(2):38–52

    Google Scholar 

  52. Jang JS, Kim J, Ghorpade U, Shin HH, Gang MG (2019) Comparison study of ZnO-based quaternary TCO materials for photovoltaic application. J Alloy Compd 793:499–504

  53. Hossain MM (2019) First-principles study on the structural, elastic, electronic and optical properties of LiNbO3. Heliyon 5(4):e01436

    Article  Google Scholar 

  54. Treml BE, Yang J, Wise F, Hanrath T (2016) Simultaneous ligand and cation exchange in PbSe/CdSe nanocrystal films. Chem Phys 471:69–74

  55. Salik L, Bouhemadou A, Boudiaf K, Saoud FS (2020) Structural, elastic, electronic, magnetic, optical, and thermoelectric properties of the diamond-like quaternary semiconductor CuMn2InSe4. J Supercond Novel Magn 33(4):1091–1102

  56. Gagkaeva TY, Gavrilova OP, Orina AS, Blinova EV (2017) Response of wild Avena species to fungal infection of grain. Crop J 5(6):499–508

  57. Noor NA, Hassan M, Rashid M (2018) Systematic study of elastic, electronic, optical and thermoelectric properties of cubic BiBO3 and BiAlO3 compounds at different pressure by using ab-initio calculations. Mater Res Bull 97:436–443

  58. Tripathy SK, Lenka TR, Hvizdos P (2022) Device simulation of Ag2SrSnS4 and Ag2SrSnSe4 based thin-film solar cells from scratch. Adv Theory Sims 5(2):2100208

  59. Bang J, Yang H, Holloway PH (2006) Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnol 17(4):973

    Article  CAS  Google Scholar 

  60. Kang HS, Kang JS, Kim JW, Lee SY (2004) Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J Appl Phys 95(3):1246–1250

  61. Devi S, Khatkar A, Taxak VB, Dalal M, Chahar S (2018) Optical properties of trivalent samarium-doped Ba5Zn4Y8O21 nanodiametric rods excitable by NUV light. J Alloy Compd 767:409–418

  62. Liu G, Chen X (2007) Spectroscopic properties of lanthanides in nanomaterials. Handb Phys Chem Rare Earths 37:99–169

    Article  CAS  Google Scholar 

  63. Wang H, Qin G, Li G, Wang Q, Hu M (2017) Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence. Phys Chem Chem Phys 19(20):12882–12889

  64. Li CW, Hong J, May AF, Bansal D, Chi S, Hong T (2015) Orbitally driven giant phonon anharmonicity in SnSe. Nat Phys 11(12):1063–1069

  65. Li CW, Ma J, Cao HB, May AF, Abernathy DL, Ehlers G (2014) Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics. Phys Rev B 90(21):214303

  66. Henry A (2014) Thermal transport in polymers. Annual Rev Heat Transfer 17:485

    Article  Google Scholar 

  67. Xu P, Wang H, Ren L, Tu B, Wang W (2021) Theoretical study on composition‐dependent properties of ZnO· n Al2O3 spinels. Part II: mechanical and thermophysical. J Am Ceram Soc 104(12):6455–6466

  68. Shafique A, Samad A, Shin Y-H (2017) Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS 2 and SnSe 2: a first principles study. Phys Chem Chem Phys 19(31):20677–20683

    Article  CAS  Google Scholar 

  69. Yin Y (2019) Advanced thermoelectric materials and spintronics for energy conservation. The University of Utah

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Moin and Dr. Abdul Waheed Anwar researched about the material and worked on this project theoretically. Anwar Ali, Shafqat Nabi, and M. Zeeshan Bashir assisted in graphical representations.

Shahid Ali, Shahid Bilal, and Najam Ul Haq edited the figures and tables of the manuscript.

Corresponding author

Correspondence to Abdul Waheed Anwar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moin, M., Anwar, A.W., Ali, A. et al. A comprehensive correlated analysis of Ra-Doped (ZnO2, ZnO) for optoelectronic applications: a first-principle study. J Mol Model 29, 44 (2023). https://doi.org/10.1007/s00894-022-05425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05425-z

Keywords

Navigation