Skip to main content
Log in

Molecular dynamics simulations of the decomposition and UsUp relationship of RDX molecular crystal subjected to high velocity impact

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Reed EJ, Manna MR, Fried LE, et al. (2008) A transient semimetallic layer in detonating nitromethane. Nat Phys 4:72–76

    Article  CAS  Google Scholar 

  2. Brenner DW, Shenderova OA, Harrison JA, et al. (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Physics: Condens Matter 14:783–802

    CAS  Google Scholar 

  3. Martinez J, Liang T, Sinnott SB, et al. (2017) A third-generation charge optimized many body (COMB3) potential for nitrogen-containing organic molecules. Computational Material Science 139:153–161

    Article  CAS  Google Scholar 

  4. van Duin ACT, Dasgupta S, Lorant F, et al. (2001) Reaxff: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  5. Strachan A, van Duin ACT, Chakraborty D, et al. (2003) Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Phys Rev Lett 91(9):098301

    Article  Google Scholar 

  6. Zhao X, Hintsa EJ, Lee YT (1988) Infrared multiphoton dissociation of RDX in a molecular beam. J Chemical Physics 88:801–810

    Article  CAS  Google Scholar 

  7. Botcher TR, Wight CA (1994) Explosive thermal decomposition mechanism of RDX. J Phys Chem 98:5441–5444

    Article  CAS  Google Scholar 

  8. Botcher TR, Wight CA (1993) Transient thin film laser pyrolysis of RDX. J Phys Chem 97:9149–9153

    Article  CAS  Google Scholar 

  9. Pace MD (1991) Epr spectra of photochemical nitrogen dioxide formation in monocyclic nitramines and hexanitro hexaazaisowurtzitane. J Phys Chem 95(15):5858–5864

    Article  CAS  Google Scholar 

  10. Choi M, Kim H, Chung C, et al. (1995) Ft-ir spectra of photochemical reaction products of crystalline RDX. J Physical Chem 99(43):15785–15789

    Article  CAS  Google Scholar 

  11. Behrens R Jr, Bulusu S (1992) Thermal decomposition of energetic materials. 4. deuterium isotope effects and isotopic scrambling (h/d, 13c/18o, 14n/15n) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX). J Physical Chemistry 96(22):8891–8897

    Article  CAS  Google Scholar 

  12. Capellos C, Papagiannakopoulos P, Liang Y (1989) The 248 nm photo decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine. Chemical Physics Letter 164(3):533–538

    Article  CAS  Google Scholar 

  13. Gibbs TR, Popolato A (1980) LASL Explosive Property Data Page no 150, University of California Press, Berkeley and Los Angeles, California

  14. Cooper PW (1996) Explosive engineering, wiley-vch publishing usa

  15. Strachan A, van Duin ACT, Goddard WA III, et al. (2003) Initial chemical events in the energetic material rdx under shock loading: Role of defects, Paper presented in Shock Compression of Condensed Matter - 2003: Proceedings of the Conference of the American Physical Society, Topical Group on Shock compression of Condensed Matter: v.706 (AIP Conference Proceedings).

  16. Plimpton SJ (1995) Fast parallel algorithms for shortrange molecular dynamics. J Comp Phys 117:1–19

    Article  CAS  Google Scholar 

  17. Chakraborty D, Muller RP, Dasgupta S, et al. (2000) The mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-triazine), an ab initio study. J. Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

  18. Chakraborty D, Muller P, Dasgupta S, et al. (2001) A detailed model for the decomposition of nitramines: RDX and HMX. J. Computer-Aided Materials Design 8:203–212

    Article  CAS  Google Scholar 

  19. Pahari P, Warrier M, Rao ADP, et al. (2018) Simulating the unimolecular decomposition pathways of cyclotrimethylnitramine (RDX). J Molecular Modelling 24(6):134

    Article  CAS  Google Scholar 

  20. Liu L, Lang L, Yu J, et al. (2018) Stability, mechanical properties and anisotropic elastic properties of Ga x Mg y compounds, Materials Research,. Mater Res 22(2):0624

    Google Scholar 

  21. Haussuhl S (2001) Elastic and thermoelastic properties of selected organic crystals: acenaphthene, trans-azobenzene, benzophenone, tolane, trans-stilbene, dibenzyl, diphenyl sulfone, 2,2-biphenol, urea, melamine, hex-ogen, succinimide, pentaerythritol, urotropine, malonic acid, dimethyl malonic acid, maleic acid, hippuric acid, aluminium acetylacetonate, iron acetylacetonate, and tetraphenyl silicon. Kristallogr 216:339

    CAS  Google Scholar 

  22. Schwarz RB, Hooks DE, Dick JJ, et al. (2005) Resonant ultrasound spectroscopy measurement of the elastic constants of cyclotrimethylene trinitramine. J Appl Phys 98:056106

    Article  Google Scholar 

  23. Ye S, Tonokura K, Koshi M, et al. (2002) Theoretical calculations of lattice properties of secondary explosives. Kayaku Gakkaishi 63(3):104–115

    CAS  Google Scholar 

  24. Sewell T, Bennett CM, et al. (2000) Monte carlo calculations of the elastic moduli and pressure-volume-temperature equation of state for hexahydro- 1,3,5-trinitro-1,3,5-triazine. J Appl Phys 88:88

    Article  CAS  Google Scholar 

  25. Haycraft JJ, Stevens LL, Eckhardt CJ, et al. (2006) The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by brillouin scattering. J Chem Phys 124(2):024712

    Article  Google Scholar 

  26. Sorescu D, Rice B (2016) RDX compression, αγ phase transition and shock hugoniot calculations from density function theory based molecular dynamics simulations. USA Army Res Lab Report

  27. Olinger B et al (1978) Symposium international sur le comportement des milieux denses sous hautes pressions dynamiques

  28. Johnson JA, Manke KJ, Veysset DG, et al. (2011) Photoacoustic determination of the speed of sound in single crystal cyclotrimethylene trinitramine at acoustic frequencies from 0.5 to 15 GHz. J Appl Phys 110:113513

    Article  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K, et al. (1996) Vmd: Visual molecular dynamics. J. Molecular Graphics 14(1):33

    Article  CAS  Google Scholar 

  30. Sorescu DC, Rice BM (2016) Rdx compression, phase transition, and shock hugoniot calculations from density-functional-theory-based molecular dynamics simulations. J Phys Chem C 120(35):19547–19557

    Article  CAS  Google Scholar 

  31. Kee RJ, et. al (1996) Chemkin-iii: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

Download references

Acknowledgements

The authors would like to acknowledge the support and cooperation extended by the High Power Computing team of Computational Analysis Division for maintaining the supercomputing facility for the users.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pahari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

P. Pahari: conceptualisation, methodology, analysis, visualisation, writing original draft and editing. A. D. P. Rao: technical, administrative and auxiliary assistance, supervision. M. Warrier: methodology, investigation, analysis, editing and writing the original draft.

Availability of data and material

The raw data will be shared on request, as it is a part of ongoing work.

Code availability

The software LAMMPS which is used in this work is an open source code

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(SH 305 bytes)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahari, P., Rao, A.D.P. & Warrier, M. Molecular dynamics simulations of the decomposition and UsUp relationship of RDX molecular crystal subjected to high velocity impact. J Mol Model 29, 50 (2023). https://doi.org/10.1007/s00894-022-05421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05421-3

Keywords

Navigation