Skip to main content
Log in

Simulation and experimental study on the incompatibility issue between ADN and isocyanate

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Since solid composite propellants are composed of a high percentage of oxidizers, the search for green oxidizers such as ammonium dinitramide (ADN) as a substitute for non-eco-friendly ammonium perchlorate (AP) is an important issue. ADN/GAP propellants are good green candidates to replace conventional AP/HTPB propellants. The incompatibility issue of ADN with isocyanate curing agents of polyurethane binders is a well-known problem.

Methods

In this research, from the perspective of molecular dynamics and solubility parameter concept, an attempt was made to study molecular factors determining the preferable curing system for ADN/GAP composite propellants by examining the interaction energy between different isocyanate curing agents and ADN as well as GAP. From another standpoint, the aim is to show that the reactivity rate of different isocyanates with ADN has a significant difference, which has been investigated using molecular dynamics simulation and experimentally. The examined isocyanates include N100, IPDI, TDI, DDI, IPDI/N100, and DDI/N100. The activity of the selected curing system upon ADN was investigated using infrared spectroscopy at different time intervals and compared with the N100 as a conventional curing system. The results show that a meaningful improvement occurs using the selected curing system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All generated or analyzed data during this study are included in the paper.

Abbreviations

ADN:

Ammonium dinitramide

AP:

Ammonium perchlorate

CED:

Cohesive energy density

DDI:

Dimeryl diisocyanate

DSC:

Differential scanning calorimetry

Forcite:

A module of Materials Studio simulation software

FOX-12:

 N-guanylurea-dinitramide

GAP:

Glycidyl azide polymer

GuDN:

N-guanylurea-dinitramide

HMX:

1,3,5,7-Tetranitro-1,3,5,7-tetrazocane

HTPB:

Hydroxyl terminated polybutadiene

IPDI:

Isophorone diisocyanate

EGA:

Evolved gas analysis

KDN:

Potassium dinitramide

N100:

Desmodur® N100

NPT:

Constant number of particles, pressure, and temperature

NVE:

Constant number of particles, volume, and energy

NVT:

Constant number of particles, volume, and temperature

R :

Molar gas constant

RDX:

1,3,5-Trinitroperhydro-1,3,5-triazine

T :

Temperature

TDI:

Toluene diisocyanate

V m :

Molar volume

ΔH V :

Enthalpy of vaporization

References

  1. Ghee AH, Santhosh G (2007) Advances in energetic dinitramides: an emerging class of inorganic oxidizers. World Scientific, Singapore

    Book  Google Scholar 

  2. Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca T (2017) Recent advances in new oxidizers for solid rocket propulsion. Green Chem 19:711–4736. https://doi.org/10.1039/C7GC01928A

    Article  Google Scholar 

  3. Venkatachalam S, Santhosh G, Ninan KN (2004) An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propellants Explos Pyrotech 29:178–187. https://doi.org/10.1002/prep.200400043

    Article  CAS  Google Scholar 

  4. Cui JH, Han JY, Wang JG, Huang RS (2010) Study on the crystal structure and hygroscopicity of ammonium dinitramide. J Chem Eng Data 55:3229–3234. https://doi.org/10.1021/je100067n

    Article  CAS  Google Scholar 

  5. Bunte G, Neumann H, Antes J, Krause HH (2002) Analysis of ADN, its precursor and possible by-products using ion chromatography. Propellants Explos Pyrotech 27:119–124. https://doi.org/10.1002/1521-4087(200206)27:3%3c119::AID-PREP119%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  6. Landsem E, Jensen TL, Hansen FK, Unneberg E, Kristensen TE (2010) Mechanical properties of smokeless composite rocket propellants based on prilled ammonium dinitramide. Propellants Explos Pyrotech 35:1–8. https://doi.org/10.1002/prep.201200004

    Article  CAS  Google Scholar 

  7. Rahm M, Malmström E, Eldsäter C (2011) Design of an ammonium dinitramide compatible polymer matrix. J Appl Polym Sci 122:1–11. https://doi.org/10.1002/app.34186

    Article  CAS  Google Scholar 

  8. Keicher T, Kuglstatter W, Eisele S, Wetzel T, Krause H (2009) Isocyanate-free curing of glycidyl azide polymer (GAP) with bis-propargyl-succinate (II). Propellants Explos Pyrotech 34:210–217. https://doi.org/10.1002/prep.200900001

    Article  CAS  Google Scholar 

  9. Vo TS, Vo TTBC (2020) Preparation and characterization of bis-propargyl-succinate, and its application in preliminary healing ability of crosslinked polyurethane using “azide-alkyne” click. J Eng Sci Tech Rev 13:110–116

    Article  CAS  Google Scholar 

  10. de Flon J, Andreasson S, Liljedahl M, Oscarson C, Wanhatalo M, Wingborg N (2012) Solid propellants based on ADN and HTPB. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2011-6136

  11. Wingborg N, Andreasson S, de Flon J, Johnsson M, Liljedahl M, Oscarson C, Pettersson A, Wanhatalo M (2012) Development of ADN-based minimum smoke propellants. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2010-6586

  12. Wingborg N, de Flon J, Johnson C, Whitlow W (2008) Green propellants based on ADN. Space propulsion 2008, ESA 3AF SNPE

  13. Landsem E, Jensen TL, Kristensen TE, Hansen FK, Benneche T, Unneberg E (2013) Isocyanate-free and dual curing of smokeless composite rocket propellants. Propellants Explos Pyrotech 38:75–86. https://doi.org/10.1002/prep.201200108

    Article  CAS  Google Scholar 

  14. Hagen TH, Jensen TL, Unneberg E, Stenstrøm YH, Kristensen TE (2015) Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems. Propellants Explos Pyrotech 40:275–284. https://doi.org/10.1002/prep.201400146

    Article  CAS  Google Scholar 

  15. Menke K, Heintz T, Schweikert W, Keicher T, Krause H (2009) Formulation and properties of ADN/GAP propellants. Propellants Explos Pyrotech 34:218–230. https://doi.org/10.1002/prep.200900013

    Article  CAS  Google Scholar 

  16. Hu J, Tang W, Li Y, He J, Guo X, Rongjie Y (2020) The effect of glycidyl azide polymer grafted tetrafunctional isocyanate on polytriazole polyethylene oxide-tetrahydrofuran elastomer and its propellant properties. Polymers 12:278–289. https://doi.org/10.3390/polym12020278

    Article  CAS  Google Scholar 

  17. Wingborg N, Johansson J, Johansson M, Liljedahl M, Lindborg A, Oscarson C, Pettersson Å, Sjöblom M (2013) Solid ADN propellant development. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. https://doi.org/10.2514/6.2013-3723

  18. Lu Q, Chen F, Xiao L, Yang J, Hu Y, Zhang G, Zhao F, Wang Y, Jiang W, Hao G (2022) Advances in the molecular simulation and numerical calculations of the green high-energy oxidant ADN. Mater Today Commun 31:103699. https://doi.org/10.1016/j.mtcomm.2022.103699

    Article  CAS  Google Scholar 

  19. Chen F, Xuan C, Lu Q, Xiao L, Yang J, Hu Y, Zhang G, Wang Y, Zhao F, Hao G, Jiang W (2022) A review on the high energy oxidizer ammonium dinitramide: its synthesis, thermal decomposition, hygroscopicity, and application in energetic materials. Def Technol. https://doi.org/10.1016/j.dt.2022.04.006

    Article  Google Scholar 

  20. Lu Q, Xiao L, Wang Y, Zhang G, Hu Y, Chen F, Zhao F, Yang J, Jiang W, Hao G (2022) Theoretical simulation study on crystal property and hygroscopicity of ADN doping with nitramine explosives (RDX, HMX, and CL-20). J Mol Model 28:208. https://doi.org/10.1007/s00894-022-05200-0

    Article  CAS  Google Scholar 

  21. Wang F, Liu H, Gong XD (2013) A theoretical study on the structure and hygroscopicity of ammonium dinitramide. Struct Chem 24:1537–1543. https://doi.org/10.1007/s11224-012-0185-x

    Article  CAS  Google Scholar 

  22. Ren Z, Chen X, Yu G, Wang Y, Chen B, Zhou Z (2020) Molecular simulation studies on the design of energetic ammonium dinitramide co-crystals for tuning hygroscopicity. CrystEngComm 22:5237–5244. https://doi.org/10.1039/D0CE00602E

    Article  CAS  Google Scholar 

  23. Zeng T, Yang R, Li D, Li J, Guo X, Luo P (2020) Reactive molecular dynamics study on the effect of H2O on the thermal decomposition of ammonium dinitramide. Propellants Explos Pyrotech 45:1590–1599. https://doi.org/10.1002/prep.201900309

    Article  CAS  Google Scholar 

  24. Chen X, He L, Li X, Zhou Z, Ren Z (2019) Molecular simulation studies on the growth process and properties of ammonium dinitramide crystal. J Phys Chem C 123:10940–10948. https://doi.org/10.1021/acs.jpcc.9b00120

    Article  CAS  Google Scholar 

  25. Lan Y, Zhai J, Li D, Yang R (2015) The influence of solution chemistry on the morphology of ammonium dinitramide crystals. J Mater Sci 50:4933–4939. https://doi.org/10.1007/s10853-015-9040-y

    Article  CAS  Google Scholar 

  26. Li J, Yang R, Zeng T, Hu J, Tang W, Liu Z, Gong L (2021) Preparation and growth mechanism of micro spherical ammonium dinitramide crystal based on ultrasound-assisted solvent-antisolvent method. Ultrason Sonochem 78:105716. https://doi.org/10.1016/j.ultsonch.2021.105716

    Article  CAS  Google Scholar 

  27. Velardez GF, Alavi S, Thompson DL (2003) Molecular dynamics studies of melting and liquid properties of ammonium dinitramide. J Chem Phys 119:6698–6708. https://doi.org/10.1063/1.1605380

    Article  CAS  Google Scholar 

  28. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. https://doi.org/10.1021/j100389a010

    Article  CAS  Google Scholar 

  29. Hildebrand J, Scott RL (1950) The solubility of nonelectrolytes. Reinhold, New York

    Google Scholar 

  30. Hildebrand J, Scott RL (1962) Regular solutions. Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  31. Vörde C, Skifs H (2011) Method of producing salts of dinitramidic acid. US 7,981,393 B2

  32. Eroglu MS, Baysa BM, Gueven O (1997) Determination of solubility parameters of poly(epichlorohydrin) and poly(glycidyl azide) networks. Polymer 38:1945–1947. https://doi.org/10.1016/S0032-3861(96)00720-3

    Article  CAS  Google Scholar 

  33. Mason JA, Sperling LH (1976) Polymer blends and composites. Plenum Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

The author wants to acknowledge the research committee of Malek-Ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Nasser Sheibani.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 503 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheibani, N. Simulation and experimental study on the incompatibility issue between ADN and isocyanate. J Mol Model 28, 405 (2022). https://doi.org/10.1007/s00894-022-05399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05399-y

Keywords

Navigation