Skip to main content

Advertisement

Log in

Designing a humanized immunotoxin based on DELTA-stichotoxin-Hmg2a toxin: an in silico study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Breast cancer remains the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women. HER2 positive subtype includes 15–20% of breast cancer cases. This receptor could be an appropriate mark for targeting breast cancer cells. Immunotherapy methods compared to current cancer treatment methods have the lowest side effects. DELTA-stichotoxin-Hmg2a is isolated from the sea anemone and kills cells through pore formation. In the current study, we designed and evaluated an immunotoxin composed of pertuzumab and DELTA-stichotoxin-Hmg2a-derived scFv by bioinformatics tools. The designed immunotoxin was constructed using the amino acid sequences. Then, secondary structure and physico-chemical features were studied, and the tertiary structure of the immunotoxin was built according to the homology modeling methods. The validation and allergenicity of the model were assessed. The immunotoxin and receptor were docked and molecular dynamics simulation indicated the construct stability. The analysis results indicated that the construct is a stable protein that could have a natural-like structure and would not be an allergen, so this immunotoxin could effectively target HER2 receptors. Therefore, our designed immunotoxin could be an appropriate immunotoxin against HER2-positive breast cancer and could be a challenging topic for future in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

N/A.

Code availability

N/A.

References

  1. Britt KL, Cuzick J, Phillips K-A (2020) Key steps for effective breast cancer prevention. Nat Rev Cancer 20(8):417–436

    Article  CAS  Google Scholar 

  2. Mercogliano MF, Bruni S, Elizalde PV, Schillaci R (2020) Tumor necrosis factor α blockade: an opportunity to tackle breast Cancer. Front Oncol 10:584

    Article  Google Scholar 

  3. Turashvili G, Brogi E (2017) Tumor heterogeneity in breast cancer. Front Med 4:227

    Article  Google Scholar 

  4. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409

    Article  CAS  Google Scholar 

  5. Makena MR, Rao R (2020) Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium 85:102109

    Article  Google Scholar 

  6. Massicano AV, Marquez-Nostra BV, Lapi SE (2018) Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging 17:1536012117745386

    Article  Google Scholar 

  7. Lavaud P, Rousseau B, Ajgal Z, Arrondeau J, Huillard O, Alexandre J et al (2016) Bi-weekly very-high-dose lapatinib: an easy-to-use active option in HER-2-positive breast cancer patients with meningeal carcinomatosis. Breast Cancer Res Treat 157(1):191

    Article  CAS  Google Scholar 

  8. Dong Y, Li W, Gu Z, Xing R, Ma Y, Zhang Q et al (2019) Inhibition of HER2-positive breast cancer growth by blocking the HER2 signaling pathway with HER2-glycan-imprinted nanoparticles. Angew Chem Int Ed 58(31):10621–10625

    Article  CAS  Google Scholar 

  9. Recondo G Jr, de la Vega M, Galanternik F, Díaz-Cantón E, Leone BA, Leone JP (2016) Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine. Cancer Manag Res 8:57

    CAS  Google Scholar 

  10. Kim HJ, Park JY, Lee TS, Song IH, Cho YL, Chae JR et al (2019) PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS ONE 14(1):e0211047

    Article  CAS  Google Scholar 

  11. Ernst B, Anderson KS (2015) Immunotherapy for the treatment of breast cancer. Curr Oncol Rep 17(2):5

    Article  Google Scholar 

  12. Boyraz B, Sendur MA, Aksoy S, Babacan T, Roach EC, Kizilarslanoglu MC et al (2013) Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr Med Res Opin 29(4):405–414

    Article  CAS  Google Scholar 

  13. Capelan M, Pugliano L, De Azambuja E, Bozovic I, Saini K, Sotiriou C et al (2013) Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann Oncol 24(2):273–282

    Article  CAS  Google Scholar 

  14. Skerra A, Pluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240(4855):1038–1041

    Article  CAS  Google Scholar 

  15. Kato M, Hanyu Y (2013) Construction of an scFv library by enzymatic assembly of VL and VH genes. J Immunol Methods 396(1–2):15–22

    Article  CAS  Google Scholar 

  16. Vallet-Courbin A, Larivière M, Hocquellet A, Hemadou A, Parimala S-N, Laroche-Traineau J et al (2017) A recombinant human anti-platelet SCFV antibody produced in pichia pastoris for atheroma targeting. PLoS ONE 12(1):e0170305

    Article  Google Scholar 

  17. Bustamante-Córdova L, Melgoza-González EA, Hernández J (2018) Recombinant antibodies in veterinary medicine: an update. Front Vet Sci 5:175

    Article  Google Scholar 

  18. Hull EA (2015) Antibody conjugates via disulfide bridging: towards therapeutic and diagnostic applications: UCL (University College London)

  19. Rezaie E, Pour AB, Amani J, Hosseini HM (2020) Bioinformatics predictions, expression, purification and structural analysis of the PE38KDEL-scfv immunotoxin against EPHA2 receptor. Int J Pept Res Ther 26(2):979–996

    Article  CAS  Google Scholar 

  20. Weigel KJ, Shen L, Thomas CL, Alber D, Drapalik L, Schafer ZT et al (2015) Design and evaluation of a peptide-based immunotoxin for breast cancer therapeutics. FEBS Open Bio 5:202–208

    Article  CAS  Google Scholar 

  21. Ramezanpour M, Da Silva KB, Sanderson BJ (2014) The effect of sea anemone (H. magnifica) venom on two human breast cancer lines: death by apoptosis. Cytotechnology 66(5):845–52

    Article  CAS  Google Scholar 

  22. Madio B, Peigneur S, Chin YK, Hamilton BR, Henriques ST, Smith JJ et al (2018) PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell Mol Life Sci 75(24):4511–4524

    Article  CAS  Google Scholar 

  23. Wang Y, Chua KL, Khoo HE (2000) A new cytolysin from the sea anemone, Heteractis magnifica: isolation, cDNA cloning and functional expression. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1478(1):9–18

  24. Madio B, King GF, Undheim EA (2019) Sea anemone toxins: a structural overview. Mar Drugs 17(6):325

    Article  CAS  Google Scholar 

  25. Ker D-S, Sha HX, Jonet MA, Hwang JS, Ng CL (2021) Structural and functional analysis of Hydra Actinoporin-Like Toxin 1 (HALT-1). Sci Rep 11(1):1–13

    Article  Google Scholar 

  26. Subburaj Y, Ros U, Hermann E, Tong R, García-Sáez AJ (2015) Toxicity of an α-pore-forming toxin depends on the assembly mechanism on the target membrane as revealed by single molecule imaging. J Biol Chem 290(8):4856–4865

    Article  CAS  Google Scholar 

  27. Rojko N, Dalla Serra M, Maček P, Anderluh G (2016) Pore formation by actinoporins, cytolysins from sea anemones. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858(3):446-56

  28. Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C (2020) Actinoporins: from the structure and function to the generation of biotechnological and therapeutic tools. Biomolecules 10(4):539

    Article  Google Scholar 

  29. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch AJTpph (2005) Protein identification and analysis tools on the ExPASy server. 571–607

  30. Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6):846–851

    Article  CAS  Google Scholar 

  31. Dimitrov I, Flower DR, Doytchinova I, editors (2013) AllerTOP-a server for in silico prediction of allergens. BMC bioinformatics. BioMed Central

  32. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181

    Article  CAS  Google Scholar 

  33. Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41(W1):W384–W388

    Article  Google Scholar 

  34. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407-W10

  35. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures 26(2):283–91

  36. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  Google Scholar 

  37. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C et al (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12(2):255

    Article  CAS  Google Scholar 

  38. Cao W, Chen H-D, Yu Y-W, Li N, Chen W-Q (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J 134(07):783–791

    Article  Google Scholar 

  39. Zhai Z, Zhang F, Zheng Y, Zhou L, Tian T, Lin S et al (2019) Effects of marital status on breast cancer survival by age, race, and hormone receptor status: a population-based Study. Cancer Med 8(10):4906–4917

    Article  CAS  Google Scholar 

  40. Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 4(1):1–22

    Article  Google Scholar 

  41. Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L (2019) Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol 12(1):1–25

    Article  CAS  Google Scholar 

  42. Yan Y, Zhang L, Zuo Y, Qian H, Liu C (2020) Immune checkpoint blockade in cancer immunotherapy: mechanisms, clinical outcomes, and safety profiles of PD-1/PD-L1 inhibitors. Arch Immunol Ther Exp 68(6):1–15

    Article  Google Scholar 

  43. Jagosky M, Tan AR (2021) Combination of pertuzumab and trastuzumab in the treatment of HER2-positive early breast cancer: a review of the emerging clinical data. Breast Cancer 13:393

    CAS  Google Scholar 

  44. Ayoub NM, Al-Shami KM, Yaghan RJ (2019) Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer 11:53

    CAS  Google Scholar 

  45. HashemiYeganeh H, Heiat M, Kieliszek M, Alavian SM, Rezaie E (2021) DT389-YP7, a recombinant immunotoxin against glypican-3 that inhibits hepatocellular cancer cells: an in vitro study. Toxins 13(11):749

    Article  CAS  Google Scholar 

  46. Tung BT, Quynh CTX, Hong NK (2022) Nanotechnology applications in breast cancer. Handbook of Research on Natural Products and Their Bioactive Compounds as Cancer Therapeutics: IGI Global. 442–65

  47. Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R et al (2021) Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int 21(1):1–17

    Article  Google Scholar 

  48. Heiat M, HashemiYeganeh H, Alavian SM, Rezaie E (2021) Immunotoxins immunotherapy against hepatocellular carcinoma: a promising prospect. Toxins 13(10):719

    Article  CAS  Google Scholar 

  49. Rezaie E, Bidmeshki Pour A, Amani J, Mahmoodzadeh HH (2020) Bioinformatics predictions, expression, purification and structural analysis of the PE38KDEL-scfv immunotoxin against EPHA2 receptor. Int J Pept Res Ther 26(2):979–996

    Article  CAS  Google Scholar 

  50. Rong L, Lim RM, Yin X, Tan L, Yang JH, Xie J (2022) Site-specific dinitrophenylation of single-chain antibody fragments for redirecting a universal CAR-T cell against cancer antigens. J Mol Biol 434(8):167513

    Article  CAS  Google Scholar 

  51. Krokhotin A, Du H, Hirabayashi K, Popov K, Kurokawa T, Wan X et al (2019) Computationally guided design of single-chain variable fragment improves specificity of chimeric antigen receptors. Mol Ther Oncolytics 15:30–37

    Article  CAS  Google Scholar 

  52. Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. 421(6924):756–60

Download references

Funding

This study was financially supported by the Behbahan Faculty of Medical Sciences, Behbahan, Iran (grant number: 400055).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed as below:

Writing: Zeinab Ghesmati, Samira Mokhtari, and Maliheh Parvanak; data analysis: Mortaza Taheri-Anganeh, Khadijeh Ahmadi, and Farzaneh Vahedi; critical editing: Vahid Zarezade and Zeinab Shajirat; supervising and conceptualization: Navid Nezafat and Ahmad Movahedpour. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Navid Nezafat or Ahmad Movahedpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghesmati, Z., Mokhtari, S., Parvanak, M. et al. Designing a humanized immunotoxin based on DELTA-stichotoxin-Hmg2a toxin: an in silico study. J Mol Model 28, 392 (2022). https://doi.org/10.1007/s00894-022-05389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05389-0

Keywords

Navigation