Skip to main content
Log in

Investigating a nickel-decorated fullerene for adsorbing tespa anticancer: drug delivery assessments

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A representative model of nickel-decorated fullerene (C19Ni) was investigated in this work for the adsorption of tespa (TESPA) anticancer towards approaching the drug delivery purposes. The singular and bimolecular models were stabilized by density functional theory (DFT) calculations to yield two complexes of TESPA@C19Ni models, TN and TS. The models were in a reasonable adsorption strength and their features showed benefits of such complex formations for approaching a carrier role fullerene. Frontier molecular orbitals were analyzed and atomic features were evaluated to reach a point of employing the investigated models in the drug delivery processes. One important observation of this complex model was movement of all frontier molecular orbitals to the fullerene side and the other point was the significant effects of adsorption process of those atoms of TESPA in a direct communication with the fullerene. Accordingly, the dominant role of fullerene was highlighted for the purpose of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and materials of this work could be provided upon request.

References

  1. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA (2021) Targeted drug delivery strategies for precision medicines. Nat Rev Mater 6:351–370

    Article  CAS  Google Scholar 

  2. Aghazadeh T, Bakhtiari N, Rad IA, Ramezani F (2021) Formulation of Kaempferol in nanostructured lipid carriers (NLCs): a delivery platform to sensitization of MDA-MB468 breast cancer cells to paclitaxel. Biointerface Res Appl Chem 11:14591–14601

    Article  CAS  Google Scholar 

  3. Younis S, Ali W (2021) Identification of polyamine compounds and characterization of polyamine oxidase from sheep’s brain tissue. Euras Chem Commun 3:644–655

    CAS  Google Scholar 

  4. Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N (2020) Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev 52:205–224

    CAS  Google Scholar 

  5. Sabir F, Barani M, Rahdar A, Bilal M, Nadeem M (2021) How to face skin cancer with nanomaterials: a review. Biointerface Res Appl Chem 11:11931–11955

    CAS  Google Scholar 

  6. Abdelhamid HN, Hussein KH (2021) Graphene oxide as a carrier for drug delivery of methotrexate. Biointerface Res Appl Chem 11:14726–14735

    Article  CAS  Google Scholar 

  7. Ghamsari PA, Samadizadeh M, Mirzaei M (2020) Halogenated derivatives of cytidine: structural analysis and binding affinity. J Theor Comput Chem 19:2050033

    Article  CAS  Google Scholar 

  8. Kram Allah A, Al-Tamimi E (2021) Synthesis of new 5-aryl tetrazoline from N-2-hydrazido cyclic imides and study of biological activity. Euras Chem Commun 3:392–400

    Google Scholar 

  9. Fahad M, Alkhuzaie M, Ali S (2021) Recent advances in sulfadiazine’s preparation, reactions and biological applications. Euras Chem Commun 3:383–391

    CAS  Google Scholar 

  10. Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W, Cai Z (2021) Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int J Nanomed 16:5811

    Article  Google Scholar 

  11. Ghodsi F, Shahraki M, Habibi-Khorassani S, Omidikia N, Heidari MM (2021) Kinetic modeling on mitoxantrone release from hyaluronic MNP as a drug delivery system. Chem Methodol 5:30–34

    CAS  Google Scholar 

  12. Hatami A, Heydarinasab A, Akbarzadehkhiyavi A, Pajoum SF (2021) An introduction to nanotechnology and drug delivery. Chem Methodol 5:153–165

    CAS  Google Scholar 

  13. Zheng J, Long X, Chen H, Ji Z, Shu B, Yue R, Liao Y, Ma S, Qiao K, Liu Y, Liao Y (2022) Photoclick reaction constructs glutathione-responsive theranostic system for anti-tuberculosis. Front Mol Biosci 9:845179

    Article  CAS  Google Scholar 

  14. He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, Wen X, Cheng L, Zhu R (2021) MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci 8:2003535

    Article  CAS  Google Scholar 

  15. Yan J, Yao Y, Yan S, Gao R, Lu W, He W (2020) Chiral protein supraparticles for tumor suppression and synergistic immunotherapy: an enabling strategy for bioactive supramolecular chirality construction. Nano Lett 20:5844–5852

    Article  CAS  Google Scholar 

  16. Abidin Z (2021) Total carotenoids, antioxidant and anticancer effect of penaeus monodon shells extract. Biointerface Res Appl Chem 11:11293–11302

    Google Scholar 

  17. Altaf NU, Naz MY, Shukrullah S, Bhatti HN (2021) Testing of photocatalytic potential of silver nanoparticles produced through nonthermal plasma reduction reaction and stabilized with saccharides. Main Group Chem 20:475–488

    Article  CAS  Google Scholar 

  18. Honorio-França AC, Fernandes RT, Tozetti IA, Fujimori M, de Pinho CL, Fagundes-Triches DL (2021) Mechanism anti-tumor of IgA-based delivery system on the human colostral mononuclear cells via Fcα receptor. Biointerface Res Appl Chem 11:14906–14917

    Article  Google Scholar 

  19. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:1–33

    Article  Google Scholar 

  20. Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, Yuan M (2020) Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol 7:489

    Article  Google Scholar 

  21. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives. Oncol Rep 38:611–624

    Article  CAS  Google Scholar 

  22. Birk SE, Boisen A, Nielsen LH (2021) Polymeric nano-and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev 174:30–52

    Article  CAS  Google Scholar 

  23. Lai WF, Tang R, Wong WT (2020) Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal drug delivery. Pharmaceutics 12:725

    Article  CAS  Google Scholar 

  24. Lai WF (2020) Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 59:101916

    Article  CAS  Google Scholar 

  25. Chavda VP (2019) Nanobased nano drug delivery: a comprehensive review. Appl Target Nano Drugs Deliv Syst 69–92

  26. Ali Fadhil H, Samir AH, Abdulghafoor Mohammed Y, Al Rubaei ZMM (2022) Synthesis, characterization, and in vitro study of novel modified reduced graphene oxide (RGO) containing heterocyclic compounds as anti-breast cancer. Euras Chem Commun 4:1156–1170

    Google Scholar 

  27. Hosseini SMH, Naimi-Jamal MR, Hassani M (2022) Preparation and characterization of mebeverine hydrochloride niosomes as controlled release drug delivery system. Chem Methodol 6:591–603

    CAS  Google Scholar 

  28. Salamanna F, Gambardella A, Contartese D, Visani A, Fini M (2021) Nano-based biomaterials as drug delivery systems against osteoporosis: a systematic review of preclinical and clinical evidence. Nanomaterials 11:530

    Article  CAS  Google Scholar 

  29. Baghernejad B, Alikhani M (2022) Nano-cerium oxide/aluminum oxide as an efficient catalyst for the synthesis of xanthene derivatives as potential antiviral and anti-inflammatory agents. J Appl Organomet Chem 2:155–162

    Google Scholar 

  30. Tallapaneni V, Mude L, Pamu D, Karri VVSR (2022) Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds. J Med Chem Sci 5:1059–1074

    CAS  Google Scholar 

  31. Pari AA, Yousefi M (2022) Interactions between favipiravir and a BNC cage towards drug delivery applications. Struct Chem 33:159–167

    Article  CAS  Google Scholar 

  32. Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z, Liu J, Liang C, Yu Y, Lu A, Zhang G (2020) A loop-based and AGO-Incorporated virtual screening model targeting AGO-Mediated miRNA–mRNA interactions for drug discovery to rescue bone phenotype in genetically modified Mice. Adv Sci 7:1903451

    Article  CAS  Google Scholar 

  33. Jin K, Yan Y, Chen M, Wang J, Pan X, Liu X, Liu M, Lou L, Wang Y, Ye J (2022) Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration. Acta Ophthalmol 100:e512–e520

    Article  Google Scholar 

  34. Sarvestani MJ, Charehjou P (2021) Fullerene (C20) as a potential adsorbent and sensor for the removal and detection of picric acid contaminant: DFT Studies. Central Asian J Environ Sci Technol Innov 2:12–19

    Google Scholar 

  35. Pradhan SN, West WL, Baird GM, Steward JD (1961) Effect of thioTEPA on the synthesis of protein and nucleic acids in tumor-bearing mice. Can Res 21:984–988

    CAS  Google Scholar 

  36. Klein B, Falkson G, Smit CF (1985) Advanced ovarian carcinoma. Factors influencing survival. Cancer 55:1829–1834

    Article  CAS  Google Scholar 

  37. Scordo M, Wang TP, Ahn KW, Chen Y, Ahmed S, Awan FT, Beitinjaneh A, Chen A, Chow VA, Dholaria B, Epperla N (2021) Outcomes associated with thiotepa-based conditioning in patients with primary central nervous system lymphoma after autologous hematopoietic cell transplant. JAMA Oncol 7:993–1003

    Article  Google Scholar 

  38. Cao Y, El-Shorbagy MA, Sharma K, Alamri S, Rajhi AA, Anqi AE, El-Shafay AS (2021) Amino acid functionalized boron nitride nanotubes as an effective nanocarriers for thiotepa anti-cancer drug delivery. J Mol Liq 344:117967

    Article  CAS  Google Scholar 

  39. Li JY, Tang YH, Tang L, Chen LY (2022) Adsorption of thiotepa anticancer drugs on the C3N nanotube as promising nanocarriers for drug delivery. J Mol Model 28:1–9

    Article  Google Scholar 

  40. Duque-Afonso J, Ihorst G, Waterhouse M, Zeiser R, Wäsch R, Bertz H, Yücel M, Köhler T, Müller-Quernheim J, Marks R, Finke J (2021) Comparison of reduced-toxicity conditioning protocols using fludarabine, melphalan combined with thiotepa or carmustine in allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 56:110–120

    Article  CAS  Google Scholar 

  41. Khattab M, Al-Karmalawy AA (2021) Revisiting activity of some nocodazole analogues as a potential anticancer drugs using molecular docking and DFT calculations. Front Chem 9:628398

    Article  CAS  Google Scholar 

  42. JalaliKondori B, Hemadi SMH, EsmaeiliGouvarchinGhaleh H, MilaniFard AM, Dorostkar R (2022) Pharmacological study of the antitumor effect of Newcastle oncolytic virus in combination with copper nanoparticles, hyperthermia and radiation on malignant colorectal cancer cell line. J Med Chem Sci 5:457–467

    Google Scholar 

  43. Zare Kazemabadi F, Heydarinasab A, Akbarzadehkhiyavi A, Ardjmand M (2021) Development, optimization and in vitro evaluation of etoposide loaded lipid polymer hybrid nanoparticles for controlled drug delivery on lung cancer. Chem Methodol 5:135–152

    Google Scholar 

  44. Pour Karim S, Ahmadi R, Yousefi M, Kalateh K, Zarei G (2022) Interaction of graphene with amoxicillin antibiotic by in silico study. Chem Methodol 6:861–871

    Google Scholar 

  45. Mortazavifar A, Raissi H, Akbari A (2019) DFT and MD investigations on the functionalized boron nitride nanotube as an effective drug delivery carrier for Carmustine anticancer drug. J Mol Liq 276:577–587

    Article  CAS  Google Scholar 

  46. Hashemzadeh H, Raissi H (2018) Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: a DFT calculations and molecular dynamics simulation study. J Phys D Appl Phys 51:345401

    Article  Google Scholar 

  47. Shahali A, Farahmand M, Hussein HA, Kadhim MM, Abdelbasset WK, Ebadi AG, Wu L (2022) Quantum chemical study the interaction between thiotepa drug and silicon doped graphdiyne. Comput Theor Chem 1209:113612

    Article  CAS  Google Scholar 

  48. Vuong BX, Hajali N, Asadi A, Baqer AA, Hachim SK, Canli G (2022) Drug delivery assessment of an iron-doped fullerene cage towards thiotepa anticancer drug. Inorg Chem Commun 141:109558

    Article  CAS  Google Scholar 

  49. Bahramnia H, Mohammadian Semnani H, Habibolahzadeh A, Abdoos H, Rezaei F (2021) The effect of 3-(triethoxy silyl) propyl amine concentration on surface modification of multiwall carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct 29:74–82

    Article  CAS  Google Scholar 

  50. Shenoy RU, Rama A, Govindan I, Naha A (2022) The purview of doped nanoparticles: insights into their biomedical applications. OpenNano 8:100070

    Article  Google Scholar 

  51. El Moukhtari SH, Rodriguez-Nogales C, Blanco-Prieto MJ (2021) Oral lipid nanomedicines: current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 173:238–251

    Article  Google Scholar 

  52. Zhao Q, Li M, Lin L (2021) Release rate optimization in molecular communication for local nanomachine-based targeted drug delivery. IEEE Trans Nanobiosci 20:396–405

    Article  Google Scholar 

  53. Rajendra PK, Jawahar N, Raman R, Shivakumar HN, Balan AP (2021) An overview of dual targeting nanostructured lipid carriers for the treatment of ovarian cancer. Indian J Pharmaceut Educ Res 55:330–335

    Article  CAS  Google Scholar 

  54. Damiati SA (2020) Digital pharmaceutical sciences. AAPS PharmSciTech 21:1–2

    Article  Google Scholar 

  55. Wang W, Ye Z, Gao H, Ouyang D (2021) Computational pharmaceutics-a new paradigm of drug delivery. J Control Release 338:119–136

    Article  CAS  Google Scholar 

  56. Zhao R, Dai H, Yao H (2022) Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. IEEE Robot Autom Lett 7:4535–4541

    Article  Google Scholar 

  57. Davidson ER, Chakravorty SJ (1994) A possible definition of basis set superposition error. Chem Phys Lett 217:48–54

    Article  CAS  Google Scholar 

  58. Bader RF, Nguyen-Dang TT (1981) Quantum theory of atoms in molecules–Dalton revisited. Adv Quantum Chem 14:63–124

    Article  CAS  Google Scholar 

  59. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  60. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  61. Pritchard BP, Altarawy D, Didier B, Gibson TD, Windus TL (2019) A new basis set exchange: an open, up-to-date resource for the molecular sciences community. J Chem Inf Model 59:4814–4820

    Article  CAS  Google Scholar 

  62. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6–31G* basis set for atoms K through Zn. J Chem Phys 109:1223–1229

    Article  CAS  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09 Citation. Gaussian. Inc., Wallingford

    Google Scholar 

  64. Verma P, Truhlar DG (2020) Status and challenges of density functional theory. Trends Chem 2:302–318

    Article  CAS  Google Scholar 

  65. Oyeneyin OE, Abayomi TG, Ipinloju N, Agbaffa EB, Akerele DD, Arobadade O (2021) Investigation of amino chalcone derivatives as anti-proliferative agents against MCF-7 breast cancer cell lines-DFT, molecular docking and pharmacokinetics studies. Adv J Chem Sect A 4:288–299

    CAS  Google Scholar 

  66. Kamel Attar Kar MH, Yousefi M (2022) Investigating drug delivery of 5-fluorouracil by assistance of an iron-modified graphene scaffold: computational studies. Main Group Chem 21: 651–658

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.H.A. and Z.A.A.M. wrote the main manuscript text and provided the content. H.Z. investigated the work and edited and managed the manuscript preparation. M.K. revised and edited the manuscript and validated the final content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hayder Hamid Al-Anbari or Hasan Zandi.

Ethics declarations

Ethics approval and consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Anbari, H.H., Mahdi, Z.AA., Zandi, H. et al. Investigating a nickel-decorated fullerene for adsorbing tespa anticancer: drug delivery assessments. J Mol Model 28, 390 (2022). https://doi.org/10.1007/s00894-022-05385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05385-4

Keywords

Navigation