Skip to main content
Log in

ADMETboost: a web server for accurate ADMET prediction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are important in drug discovery as they define efficacy and safety. In this work, we applied an ensemble of features, including fingerprints and descriptors, and a tree-based machine learning model, extreme gradient boosting, for accurate ADMET prediction. Our model performs well in the Therapeutics Data Commons ADMET benchmark group. For 22 tasks, our model is ranked first in 18 tasks and top 3 in 21 tasks. The trained machine learning models are integrated in ADMETboost, a web server that is publicly available at https://ai-druglab.smu.edu/admet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bergstra J, Yamins D, Cox D (2013) Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Int Conf Mach Learn. PMLR, pp 115–123

  2. Chen C, Zhang Q, Yu B, et al. (2020) Improving protein-protein interactions prediction accuracy using xgboost feature selection and stacked ensemble classifier. Comput Biol Med 123:103,899

    Article  CAS  Google Scholar 

  3. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794

  4. Cheng F, Li W, Zhou Y et al (2012) admetsar: a comprehensive source and free tool for assessment of chemical admet properties. J Chem Inf Model 52(11):3099–3105

    Article  CAS  Google Scholar 

  5. Deng D, Chen X, Zhang R et al (2021) Xgraphboost: extracting graph neural network-based features for a better prediction of molecular properties. J Chem Inf Model 61(6):2697–2705

    Article  CAS  Google Scholar 

  6. Dong J, Wang NN, Yao ZJ, et al. (2018) Admetlab: a platform for systematic admet evaluation based on a comprehensively collected admet database. J Cheminf 10(1):1–11

    Article  Google Scholar 

  7. Durant JL, Leland BA, Henry DR et al (2002) Reoptimization of mdl keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280

    Article  CAS  Google Scholar 

  8. Göller AH, Kuhnke L, Montanari F, et al. (2020) Bayer’s in silico admet platform: a journey of machine learning over the past two decades. Drug Discov Today 25(9):1702–1709

    Article  Google Scholar 

  9. Hu W, Liu B, Gomes J et al (2019) Strategies for pre-training graph neural networks. arXiv:1905.12265

  10. Huang K, Fu T, Glass LM et al (2020) Deeppurpose: a deep learning library for drug–target interaction prediction. Bioinformatics 36(22-23):5545–5547

    Article  CAS  Google Scholar 

  11. Huang K, Fu T, Gao W et al (2021) Therapeutics data commons: machine learning datasets and tasks for drug discovery and development. In: Proceedings of Neural Information Processing Systems, NeurIPS Datasets and Benchmarks

  12. Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised machine learning approach with chemical intuition. J Chem Inf Model 58(1):27–35

    Article  CAS  Google Scholar 

  13. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discovery Today 2(10):436–444

    Article  Google Scholar 

  14. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907

  15. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discovery 3(8):711–716

    Article  CAS  Google Scholar 

  16. Lee W H, Millman S, Desai N et al (2021) Neuralfp: out-of-distribution detection using fingerprints of neural networks. In: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, pp 9561–9568

  17. Honorio MK, Moda LT, Andricopulo DA (2013) Pharmacokinetic properties and in silico adme modeling in drug discovery. Med Chem 9(2):163–176

    Article  CAS  Google Scholar 

  18. Moriwaki H, Tian YS, Kawashita N et al (2018) Mordred: a molecular descriptor calculator. J Cheminf 10(1):1–14

    Article  Google Scholar 

  19. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminf 3(1):1–14

    Google Scholar 

  20. Ramsundar B, Eastman P, Walters P et al (2019) Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. O’Reilly Media

  21. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  Google Scholar 

  22. Schyman P, Liu R, Desai V et al (2017) vnn web server for admet predictions. Front Pharmacol 8:889

    Article  Google Scholar 

  23. Song Z, Zhou H, Tian H et al (2020) Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach. Commun Chem 3(1):1–10

    Article  Google Scholar 

  24. Tian H, Trozzi F, Zoltowski BD et al (2020) Deciphering the allosteric process of the phaeodactylum tricornutum aureochrome 1a lov domain. J Phys Chem B 124(41):8960–8972

    Article  CAS  Google Scholar 

  25. Tian H, Jiang X, Tao P (2021a) Passer: prediction of allosteric sites server. Mach Learn: Sci Technol 2(3):035,015

    Google Scholar 

  26. Tian H, Jiang X, Trozzi F et al (2021b) Explore protein conformational space with variational autoencoder. Front Mol Biosci 8:781,635

    Article  Google Scholar 

  27. Venkatraman V (2021) Fp-admet: a compendium of fingerprint-based admet prediction models. J Cheminf 13(1):1–12

    Article  CAS  Google Scholar 

  28. Waring M J, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discovery 14(7):475–486

    Article  CAS  Google Scholar 

  29. Xiong G, Wu Z, Yi J et al (2021) Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Res 49(W1):W5–W14

    Article  CAS  Google Scholar 

  30. Xiong Z, Wang D, Liu X et al (2019) Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem 63(16):8749–8760

    Article  Google Scholar 

  31. Yang H, Lou C, Sun L et al (2019) admetsar 2.0: web-service for prediction and optimization of chemical admet properties. Bioinformatics 35(6):1067–1069

    Article  CAS  Google Scholar 

  32. Zhang Q, Heldermon CD, Toler-Franklin C (2020) Multiscale detection of cancerous tissue in high resolution slide scans. In: Int Symp Vis Comput. Springer, pp 139–153

Download references

Acknowledgements

Computational time was generously provided by Southern Methodist University’s Center for Research Computing. The preprint version of this work is available on arXiv with DOI number 2204.07532 under CC BY-NC-ND 4.0 license.

Funding

Research reported in this paper was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award No. R15GM122013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Tao.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Author contribution

HT and RK conducted the experiment. HT plotted figures. All authors revised the manuscript.

Availability of data and materials

The data used in this study is publicly available in TDC ADMET benchmark group https://tdcommons.ai/benchmark/admet_group/overview/. The dataset can be downloaded through the TDC Python package (v0.3.6). The default training and testing data were used for model training. We shared the related codes, model parameters for each task, and the ready-to-use featurization results on GitHub at https://github.com/smu-tao-group/ADMET_XGBoost. The web server can be accessed at https://ai-druglab.smu.edu/admet.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hao Tian and Rajas Ketkar contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Ketkar, R. & Tao, P. ADMETboost: a web server for accurate ADMET prediction. J Mol Model 28, 408 (2022). https://doi.org/10.1007/s00894-022-05373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05373-8

Keywords

Navigation