Skip to main content
Log in

Molecular dynamics investigation of the thermal behaviors of magnesium oxide ceramics at different pressures and temperatures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Today, magnesia ceramics have attracted considerable attention due to their essential properties. Therefore, this paper investigates the impact of temperature (T) and pressure (P) on the thermal manner of magnesia ceramics using molecular dynamics simulations (MDS). As the T increases, the mobility of the structures increases. Therefore, the heat flux (HF) in the structures increments slightly due to the greater movement and the larger oscillation amplitude of the atomic samples. On the other hand, with increasing P, the oscillation amplitude and displacement of atomic samples are limited. Therefore, the thermal properties of the structure are expected to decrease. Studies show that increasing T from 250 to 350 K increases the average HF from 0.73 to 0.89 W/m2. Also, the average thermal conductivity (TC) increases from 30.58 to 38.27 W/mK. So, increasing the T means a certain amount of energy is fluxed in a shorter time. On the other hand, increasing the P from 0 to 5 bar decreases the average HF from 0.82 to 0.65 W/m2. Also, this issue leads to a decrease in the average TC from 33.49 to 30.96 W/mK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.”

References

  1. Müssig J, Graupner N (2021) Test methods for fibre/matrix adhesion in cellulose fibre‐reinforced thermoplastic composite materials: a critical review. Rev Adhesion Adhesives 8(2):68–129

  2. Dai Z, Li D, Zhou Z, Zhou S, Liu W, Liu J, Ren X (2022) A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics. Chem Eng J 427:131959

  3. Dai Z, Xie J, Liu W, Wang X, Zhang L, Zhou Z, Ren X (2020) Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl Mater 12(27):30289–30296

  4. Mohammadi R (2022) Magnetic copper ferrite nanoparticles catalyzed synthesis of benzimidazole, benzoxazole and benzothiazole derivatives. J Syn Chem 1(1):22–26

  5. Yang Y, Zhu H, Xu X, Bao L, Wang Y, Lin H, Zheng C (2021) Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater. Microporous Mesoporous Mater 324:111289

  6. Abyzov A (2019) Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and commercial production of dispersed Al2O3. Refract Ind Ceram 60(1):24–32

    Article  Google Scholar 

  7. Abdo BM, El-Tamimi A, Alkhalefah H (2020) Parametric Analysis and optimization of rotary ultrasonic machining of zirconia (ZrO2) ceramics. 727:012009.

  8. Chao S, Dogan F (2011) Effects of manganese doping on the dielectric properties of titanium dioxide ceramics. J Am Ceram Soc 94(1):179–186

    Article  CAS  Google Scholar 

  9. Itatani K, Tsujimoto T, Kishimoto A (2006) Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing. J Eur Ceram Soc 26(4–5):639–645

    Article  CAS  Google Scholar 

  10. Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li S (2020) Advanced ceramic components: materials, fabrication, and applications. J Ind Eng Chem 85:34–65

    Article  Google Scholar 

  11. Ng S, Hull J, Henshall J (2006) Machining of novel alumina/cyanoacrylate green ceramic compacts. J Mater Process Technol 175(1–3):299–305

    Article  CAS  Google Scholar 

  12. Xie J, Zhang J, Zhang Z, Yang Q, Guan K, He Y, Wu R (2022) New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corros Sci 198:1

  13. Myneni V, Kanidarapu N, Vangalapati M (2020) Methylene blue adsorption by magnesium oxide nanoparticles immobilized with chitosan (cs-mgonp): response surface methodology. Isotherm, Kinetics and Thermodynamic Studies. Iran J Chem Chem Eng 39(6):29–42

  14. Lv B, Wang S, Xu T, Guo F (2021) Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg–6.0Zn–0.5Mn alloy. J Magnes Alloy 9(3):840–852

  15. Charvat F, Kingery W (1957) Thermal conductivity: xiii, effect of microstructure on conductivity of single-phase ceramics. J Am Ceram Soc 40(9):306–315

    Article  CAS  Google Scholar 

  16. Kim Y-H, Kim Y-W, Lim K-Y, Lee S-J (2019) Mechanical and thermal properties of silicon carbide ceramics with yttria–scandia–magnesia. J Eur Ceram Soc 39(2–3):144–149

    Article  CAS  Google Scholar 

  17. Lin Y, Ning X-S, Zhou H, Chen K, Peng R, Xu W (2002) Study on the thermal conductivity of silicon nitride ceramics with magnesia and yttria as sintering additives. Mater Lett 57(1):15–19

    Article  CAS  Google Scholar 

  18. Zhou Y, Hyuga H, Kusano D, Matsunaga C, Hirao K (2019) Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides. J Am Ceram Soc 102(4):1579–1588

    Article  CAS  Google Scholar 

  19. García-Ten J, Orts M, Saburit A, Silva G (2010) Thermal conductivity of traditional ceramics: Part II: Influence of mineralogical composition. Ceram Int 36(7):2017–2024

    Article  Google Scholar 

  20. de Koker N (2009) Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. Phys Rev Lett 103(12):125902

    Article  PubMed  Google Scholar 

  21. Shukla P, Watanabe T, Nino J, Tulenko J, Phillpot S (2008) Thermal transport properties of MgO and Nd2Zr2O7 pyrochlore by molecular dynamics simulation. J Nucl Mater 380(1–3):1–7

    Article  CAS  Google Scholar 

  22. Molaei F, Siavoshi H (2020) Molecular dynamics studies of thermal conductivity and mechanical properties of single crystalline α-quartz. Solid State Commun 320:114020

    Article  CAS  Google Scholar 

  23. Ghosh P, Somayajulu P, Arya A, Dey G, Dutta B (2015) Thermal expansion and thermal conductivity of (Th, Ce)O2 mixed oxides: a molecular dynamics and experimental study. J Alloy Compd 638:172–181

    Article  CAS  Google Scholar 

  24. Cohen RE (1998) Thermal conductivity of MgO at high pressures. Rev High Press Sci Tech 7:160–162

    Article  CAS  Google Scholar 

  25. Islam AJ, Islam MS, Ferdous N, Park J, Bhuiyan A, Hashimoto A (2019) Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide. Nanotechnology 30(44):445707

    Article  CAS  PubMed  Google Scholar 

  26. Islam AJ, Islam MS, Ferdous N, Park J, Hashimoto A (2020) Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study. Phys Chem Chem Phys 22(24):13592–13602

    Article  CAS  PubMed  Google Scholar 

  27. Ahammed S, Islam MS, Mia I, Park J (2020) Lateral and flexural thermal transport in stanene/2D-SiC van der Waals heterostructure. Nanotechnology 31(50):505702

    Article  CAS  PubMed  Google Scholar 

  28. Noshin M, Khan AI, Navid IA, Uddin HA, Subrina S (2017) Impact of vacancies on the thermal conductivity of graphene nanoribbons: a molecular dynamics simulation study. AIP Adv 7(1):015112

    Article  Google Scholar 

  29. Khan AI, Navid IA, Noshin M, Uddin H, Hossain FF, Subrina S (2015) Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: a comparative study on MD potentials. Electronics 4(4):1109–1124

    Article  CAS  Google Scholar 

  30. Noshin M, Khan AI, Subrina S (2018) Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures. Nanotechnology 29(18):185706

    Article  PubMed  Google Scholar 

  31. Noshin M, Khan AI, Chakraborty R, Subrina S (2021) Modeling and computation of thermal and optical properties in silicene supported honeycomb bilayer and heterobilayer nanostructures. Mater Sci Semicond Process 129:105776

    Article  CAS  Google Scholar 

  32. Navid IA, Khan AI, Subrina S (2018) Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: an equilibrium molecular dynamics study. Mater Res Express 5(2):025015

    Article  Google Scholar 

  33. Navid IA, Subrina S (2018) Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study. RSC Adv 8(55):31690–31699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Zhang Y, Ma H, Yang M (2010) Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanopart Res 12(3):811–821

    Article  CAS  Google Scholar 

  35. Tohidi M, Toghraie D (2017) The effect of geometrical parameters, roughness and the number of nanoparticles on the self-diffusion coefficient in Couette flow in a nanochannel by using of molecular dynamics simulation. Physica B 518:20–32

  36. Baildya N, Ghosh NN, Chattopadhyay AP (2020) Inhibitory activity of hydroxychloroquine on COVID-19 main protease: an insight from MD-simulation studies. J Mol Struct 1219:128595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang T, Wang M, Gao Y, Zhang Y, Yan Y, Zhang J (2019) Enhanced oil recovery with CO2/N2 slug in low permeability reservoir: molecular dynamics simulation. Chem Eng Sci 197:204–211

    Article  CAS  Google Scholar 

  38. Rappé AK, Casewit CJ, Colwell K, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  Google Scholar 

  39. Rapaport DC (2004) The art of molecular dynamics simulation: Cambridge university press.

  40. Toghraie D, Hekmatifar M, Salehipour Y, Afrand M (2019) Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations. Chem Phys 527:110505

    Article  CAS  Google Scholar 

  41. Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  CAS  Google Scholar 

  42. Green MS (1954) Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J Chem Phys 22(3):398–413

    Article  CAS  Google Scholar 

  43. Andersson S, Bäckström G (1986) Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure. Rev Sci Instrum 57(8):1633–1639

    Article  CAS  Google Scholar 

  44. Dalton DA, Hsieh W-P, Hohensee GT, Cahill DG, Goncharov AF (2013) Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci Rep 3(1):1–5

    Article  Google Scholar 

  45. Hou S, Sun B, Tian F, Cai Q, Wang S, Peng W, Chen X, Ren Z, Li C, Wilson R (2021) Thermal Conductivity of BAs under Pressure. arXiv preprint arXiv:2110.00215

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Reza Nilforoushan or Davood Toghraie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian, M., Nilforoushan, M.R. & Toghraie, D. Molecular dynamics investigation of the thermal behaviors of magnesium oxide ceramics at different pressures and temperatures. J Mol Model 28, 361 (2022). https://doi.org/10.1007/s00894-022-05302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05302-9

Keywords

Navigation