Skip to main content
Log in

High electron mobility due to extra π-conjugation in the end-capped units of non-fullerene acceptor molecules: a DFT/TD-DFT-based prediction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). To enhance the open-circuit voltage, we have designed three new fullerene-free acceptor molecules with elongated π-conjugation in the end-capped units. Y-series-based newly designed molecules (CPSS-4F, CPSS-4Cl, CPSS-4CN) exhibited a narrow energy bandgap with high electron mobility. Red shift in the absorption spectrum with high intensities is also noted for designed molecules. Low binding and excitation energies of designed molecules favor easy excitation of exciton in the excited state. Further, CPSS-4F, CPSS-4Cl, and CPSS-4CN exhibited better open-circuit voltage with favorable molecular orbitals contributions. Transition density analysis (TDM) was also performed to locate the total transitions in the designed molecules. Outcomes of all analyses suggested that designed molecules are effective contributors to the active layer of organic solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data of this finding is available on request and requests should be made to corresponding author. In addition, optimized Cartesian coordinates of all studied systems are present in supporting information file.

References

  1. Cheng P, Li G, Zhan X, Yang Y (2018) Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics 12:131–142

    Article  CAS  Google Scholar 

  2. Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17:119–128

    Article  CAS  PubMed  Google Scholar 

  3. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R (2019) Enabling low-voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun 10:1–8

    CAS  Google Scholar 

  4. Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X (2017) Realizing small energy loss of 0.55 ev, high open‐circuit voltage > 1 V and high efficiency > 10% in fullerene‐free polymer solar cells via energy driver. Adv Mater 29:1605216

    Article  CAS  Google Scholar 

  5. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28:4734–4739

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Ye L, Hou J (2016) Breaking the 10% Efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv Energy Mater 6:1502529

    Article  CAS  Google Scholar 

  7. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H (2016) Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nature. Energy 1:1–7

    CAS  Google Scholar 

  8. Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F (2020) Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss. Adv Energy Mater 10:2001404

    Article  CAS  Google Scholar 

  9. Du X, Yuan Y, Zhou L, Lin H, Zheng C, Luo J, Chen Z, Tao S, Liao LS (2020) Delayed fluorescence emitter enables near 17% efficiency ternary organic solar cells with enhanced storage stability and reduced recombination energy loss. Adv Func Mater 30:1909837

    Article  CAS  Google Scholar 

  10. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C (2020) Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater 32:1908205

    Article  CAS  Google Scholar 

  11. Ye L, Weng K, Xu J, Du X, Chandrabose S, Chen K, Zhou J, Han G, Tan S, Xie Z (2020) Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat Commun 11:1–9

    Article  CAS  Google Scholar 

  12. Zhang Z, Yu J, Yin X, Hu Z, Jiang Y, Sun J, Zhou J, Zhang F, Russell TP, Liu F (2018) Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells. Adv Func Mater 28:1705095

    Article  CAS  Google Scholar 

  13. Liu Z, Krückemeier L, Krogmeier B, Klingebiel B, Márquez JA, Levcenko S, Öz S, Mathur S, Rau U, Unold T (2018) Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells. ACS energy lett 4:110–117

    Article  CAS  Google Scholar 

  14. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:1–8

    Article  CAS  Google Scholar 

  15. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D (2015) Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys Rev Appl 4:014020

    Article  CAS  Google Scholar 

  16. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K (2019) Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv Mater 31:1903441

    Article  CAS  Google Scholar 

  17. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y (2020) High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics 14:300–305

    Article  CAS  Google Scholar 

  18. Wu H, Bian Q, Zhao B, Zhao H, Wang L, Wang W, Cong Z, Liu J, Ma W, Gao C (2020) Effects of the isomerized thiophene-fused ending groups on the performances of twisted non-fullerene acceptor-based polymer solar cells. ACS Appl Mater Interfaces 12:23904–23913

    Article  CAS  PubMed  Google Scholar 

  19. Cong Z, Zhao B, Chen Z, Wang W, Wu H, Liu J, Wang J, Wang L, Ma W, Gao C (2019) Efficient polymer solar cells having high open-circuit voltage and low energy loss enabled by a main-chain twisted small molecular acceptor. ACS Appl Mater Interfaces 11:16795–16803

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28:9423–9429

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z (2017) Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J Am Chem Soc 139:3356–3359

    Article  CAS  PubMed  Google Scholar 

  22. Yao Z, Liao X, Gao K, Lin F, Xu X, Shi X, Zuo L, Liu F, Chen Y, Jen AK-Y (2018) Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss. J Am Chem Soc 140:2054–2057

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F (2018) Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv Energy Mater 8:1801352

    Article  CAS  Google Scholar 

  24. Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang HC, Zhang C, Zhu C (2019) Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics. Adv Mater 31:1904215

    Article  CAS  Google Scholar 

  25. Liang N, Jiang W, Hou J, Wang Z (2017) New developments in non-fullerene small molecule acceptors for polymer solar cells, Materials Chemistry. Frontiers 1:1291–1303

    CAS  Google Scholar 

  26. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau T-K, Lu X, Zhu C, Peng H, Johnson PA (2019) Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3:1140–1151

    Article  CAS  Google Scholar 

  27. Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, Lu X, Yip HL, So SK, Beaupré S (2019) Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater 31:1807577

    Article  CAS  Google Scholar 

  28. Qin R, Wang D, Zhou G, Yu Z-P, Li S, Li Y, Liu Z-X, Zhu H, Shi M, Lu X (2019) Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. J Mater Chem A 7:27632–27639

    Article  CAS  Google Scholar 

  29. Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao F (2020) Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv Mater 32:1906324

    Article  CAS  Google Scholar 

  30. Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S (2020) Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ Sci 13:2459–2466

    Article  CAS  Google Scholar 

  31. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10:1–8

    Article  CAS  Google Scholar 

  32. Zhang M, Guo X, Ma W, Ade H, Hou J (2015) A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater 27:4655–4660

    Article  CAS  PubMed  Google Scholar 

  33. Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A (2009) Gaussian 09, revision a. 02. gaussian, Inc.: Wallingford, CT

  34. Folorunso O, Hamam Y, Sadiku R, Ray SS, Adekoya GJ (2021) Investigation of graphene loaded polypyrrole for lithium-ion battery. Mater Today: Proc 38:635–638

    CAS  Google Scholar 

  35. Adamo C, Barone V (1998) Exchange functional with improved long-range behavior and adiabatic connection methods without adjustable parameters: the m PW and m PW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  36. Finley JP (2004) Using the local density approximation and the LYP, BLYP and B3LYP functional within reference-state one-particle density-matrix theory. Mol Phys 102:627–639

    Article  CAS  Google Scholar 

  37. Beerepoot MT, Friese DH, List NH, Kongsted J, Ruud K (2015) Benchmarking two-photon absorption cross sections: performance of CC2 and CAM-B3LYP. Phys Chem Chem Phys 17:19306–19314

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional. Theoret Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  39. Welsh TA, Laventure A, Welch GC (2018) Direct (Hetero) arylation for the synthesis of molecular materials: coupling Thieno [3, 4-c] pyrrole-4, 6-dione with perylene diimide to yield novel non-fullerene acceptors for organic solar cells. Molecules 23:931

    Article  PubMed Central  CAS  Google Scholar 

  40. Ans M, Iqbal J, Eliasson B, Ayub K (2019) Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Comput Mater Sci 159:150–159

    Article  CAS  Google Scholar 

  41. Tang S, Zhang J (2012) Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo (thienylenevinylene) toward solar cells. J Comput Chem 33:1353–1363

    Article  CAS  PubMed  Google Scholar 

  42. O’Boyle NM, Campbell CM, Hutchison GR (2011) Computational design and selection of optimal organic photovoltaic materials. J Phys Chem C 115:16200–16210

    Article  CAS  Google Scholar 

  43. Wu L-N, Li M-Y, Sui M-Y, Huang J-C, Sun G-Y, Cheng L (2021) Achieve panchromatic absorption for all-small-molecule organic solar cells based on mono-porphyrin molecules by π-bridge modification. Mater Today Energy 20:100658

    Article  CAS  Google Scholar 

  44. Pan J, Shi Y, Yu J, Zhang H, Liu Y, Zhang J, Gao F, Yu X, Lu K, Wei Z (2021) π-extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV. ACS Appl Mater Interfaces 13:22531–22539

    Article  CAS  PubMed  Google Scholar 

  45. Iqbal MMA, Mehboob MY, Hussain R, Adnan M, Irshad Z (2021) Synergistic effects of fluorine, chlorine and bromine-substituted end-capped acceptor materials for highly efficient organic solar cells. Comput Theor Chem 1202:113335

    Article  CAS  Google Scholar 

  46. Hussain R, Khan MU, Mehboob MY, Khalid M, Iqbal J, Ayub K, Adnan M, Ahmed M, Atiq K, Mahmood K (2020) Enhancement in photovoltaic properties of N N-diethylaniline based donor materials by bridging core modifications for efficient solar cells. ChemistrySelect 5:5022–5034

    Article  CAS  Google Scholar 

  47. Mehboob MY, Khan MU, Hussain R, Ayub K, Sattar A, Ahmad MK, Irshad Z, Adnan M (2021) Designing of benzodithiophene core-based small molecular acceptors for efficient non-fullerene organic solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 244:118873

    Article  CAS  Google Scholar 

  48. Mahmood A, Irfan A, Wang J-L (2022) Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A 10:4170–4180

    Article  CAS  Google Scholar 

  49. Mahmood A, Irfan A, Ahmad F, Ramzan Saeed Ashraf Janjua M (2021) Quantum chemical analysis and molecular dynamics simulations to study the impact of electron-deficient substituents on electronic behavior of small molecule acceptors. Comput Theor Chem 1204:113387. https://doi.org/10.1016/j.comptc.2021.113387

    Article  CAS  Google Scholar 

  50. Mahmood A, Khan SU-D, urRehman F (2015) Assessing the quantum mechanical level of theory for prediction of UV/visible absorption spectra of some aminoazobenzene dyes. J Saudi Chem Soc 19:436–441. https://doi.org/10.1016/j.jscs.2014.06.001

    Article  Google Scholar 

  51. Mahmood A, HussainTahir M, Irfan A, Khalid B, Al-Sehemi AG (2015) Computational designing of triphenylamine dyes with broad and red-shifted absorption spectra for dye-sensitized solar cells using multi-thiophene rings in π-spacer. Bull Korean Chem Soc 36:2615–2620. https://doi.org/10.1002/bkcs.10526

    Article  CAS  Google Scholar 

  52. Mahmood A, Irfan A (2020) Computational analysis to understand the performance difference between two small-molecule acceptors differing in their terminal electron-deficient group. J Comput Electron 19:931–939. https://doi.org/10.1007/s10825-020-01494-6

    Article  CAS  Google Scholar 

  53. Mahmood A, Irfan A (2020) Effect of fluorination on exciton binding energy and electronic coupling in small molecule acceptors for organic solar cells. Comput Theor Chem 1179:112797. https://doi.org/10.1016/j.comptc.2020.112797

    Article  CAS  Google Scholar 

  54. Mahmood A, Khan SU-D, Rana UA, Tahir MH (2019) Red shifting of absorption maxima of phenothiazine based dyes by incorporating electron-deficient thiadiazole derivatives as π-spacer. Arab J Chem 12:1447–1453. https://doi.org/10.1016/j.arabjc.2014.11.007

    Article  CAS  Google Scholar 

  55. Mahmood A, Yang J, Hu J, Wang X, Tang A, Geng Y, Zeng Q, Zhou E (2018) Introducing four 1,1-dicyanomethylene-3-indanone end-capped groups as an alternative strategy for the design of small-molecular nonfullerene acceptors. J Phys Chem C 122:29122–29128. https://doi.org/10.1021/acs.jpcc.8b09336

    Article  CAS  Google Scholar 

  56. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019) Quantum chemical designing of indolo[3,2,1-jk]carbazole-based dyes for highly efficient nonlinear optical properties. Chem Phys Lett 719:59–66. https://doi.org/10.1016/j.cplett.2019.01.043

    Article  CAS  Google Scholar 

  57. Haroon M, Janjua MRSA (2021) High-throughput designing and investigation of D-A−π–A -type donor materials for potential application in greenhouse-integrated solar cells. Energy Fuels 35:12461–12472. https://doi.org/10.1021/acs.energyfuels.1c01726

    Article  CAS  Google Scholar 

  58. Janjua MRSA (2021) Deciphering the role of invited guest bridges in non-fullerene acceptor materials for high performance organic solar cells. Synth Met 279:116865. https://doi.org/10.1016/j.synthmet.2021.116865

    Article  CAS  Google Scholar 

  59. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA (2018) First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C 122:4009–4018. https://doi.org/10.1021/acs.jpcc.7b12293

    Article  CAS  Google Scholar 

  60. Janjua MRSA (2021) Quantum chemical design of D–π–A-type donor materials for highly efficient, photostable, and vacuum-processed organic solar cells. Energy Technol 9:2100489. https://doi.org/10.1002/ente.202100489

    Article  CAS  Google Scholar 

  61. Janjua MRSA (2021) Theoretical understanding and role of guest π-bridges in triphenylamine-based donor materials for high-performance solar Cells. Energy Fuels 35:12451–12460. https://doi.org/10.1021/acs.energyfuels.1c01625

    Article  CAS  Google Scholar 

  62. Alwadai N, Elqahtani ZM, Khan SU, Pembere AMS, Badshah A, Mehboob MY, Nazar MF (2022) Impact of halogens on electronic and photovoltaic properties of organic semiconductors: a multiscale computational modeling. J Phys Org Chem. https://doi.org/10.1002/poc.4388

    Article  Google Scholar 

  63. Mehboob MY, Hussain R, Khan MU, Adnan M, Alvi MU, Yaqoob J, Khalid M (2022) Efficient designing of half-moon-shaped chalcogen heterocycles as non-fullerene acceptors for organic solar cells. J Mol Model 28:125. https://doi.org/10.1007/s00894-022-05116-9

    Article  CAS  PubMed  Google Scholar 

  64. Sattar A, Hussain R, Ishaq S, Assiri MA, Imran M, Hussain A, Yawer MA, Jan S, Hussain R, YasirMehboob M, Khalid M, Ayub K (2022) Nonfullerene near-infrared sensitive acceptors “octacyclic naphtho[1,2- b :5,6- b ] dithiophene core” for organic solar cell applications: in silico molecular engineering. ACS Omega 7:16716–16727. https://doi.org/10.1021/acsomega.2c01255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asif Iqbal MM, Mehboob MY, Hassan T (2022) Theoretical study of the structure-activity relationship of the S-shaped acceptor molecules for organic solar cell applications. Mater Sci Semicond Process 148:106763. https://doi.org/10.1016/j.mssp.2022.106763

    Article  CAS  Google Scholar 

  66. Irfan A, Hussien M, Mehboob MY, Ahmad A, Janjua MRSA (2022) Learning from fullerenes and predicting for Y6. Machine learning and high-throughput screening of small molecule donors for organic solar cells. Energy Technol. https://doi.org/10.1002/ente.202101096

    Article  Google Scholar 

  67. Asif Iqbal MM, Mehboob MY, Arshad M (2022) Quinoxaline based unfused non-fullerene acceptor molecules with PTB7-Th donor polymer for high performance organic solar cell applications. J Mol Graph Model 114:108181. https://doi.org/10.1016/j.jmgm.2022.108181

    Article  CAS  PubMed  Google Scholar 

  68. YasirMehboob M, Zaier R, Hussain R, Adnan M, Muhammad Asif Iqbal M, Irshad Z, Bilal I, Ramzan Saeed Ashraf Janjua M (2022) In silico modelling of acceptor materials by end-capped and π-linker modifications for high-performance organic solar cells: estimated PCE > 18%. Comput Theor Chem 1208:113555. https://doi.org/10.1016/j.comptc.2021.113555

    Article  CAS  Google Scholar 

  69. Khan MU, Hussain R, YasirMehboob M, Khalid M, Shafiq Z, Aslam M, Al-Saadi AA, Jamil S, Janjua MRSA (2020) In silico modeling of new “Y-series”-based near-infrared sensitive non-fullerene acceptors for efficient organic solar cells. ACS Omega 5:24125–24137. https://doi.org/10.1021/acsomega.0c03796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mehboob MY, Khan MU, Hussain R, Fatima R, Irshad Z, Adnan M (2020) Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells. J Theor Comput Chem 19:2050034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Malik Muhammad Asif Iqbal: Validation, visualization, formal analysis, writing—original draft. Muhammad Yasir Mehboob: Resources, supervision, software. Talha Hassan: Software, investigation, writing—review and editing.

Corresponding author

Correspondence to Muhammad Yasir Mehboob.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.M.A., Mehboob, M.Y., Hassan, T. et al. High electron mobility due to extra π-conjugation in the end-capped units of non-fullerene acceptor molecules: a DFT/TD-DFT-based prediction. J Mol Model 28, 278 (2022). https://doi.org/10.1007/s00894-022-05283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05283-9

Keywords

Navigation