Skip to main content
Log in

Utilization of boron carbide nanosheet in the recognition cathinone drug concentration in the human body

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This study adopted density functional theory (DFT) and analyzed the interaction of the conventional cathinone (CA) drug with perfect and defected monolayer nanosheets of boron carbide (BC3). BC3 was found to have poor interactions with CA. Hence, the perfect nanosheets had poor CA sensitivity. The potential of single and double vacancy (SV and DV) defects in the nanosheet to strengthen the nanosheet-drug interaction were assessed. The energy of adsorption of CA adsorption onto SV-BC3 and DV-BC3 was nearly − 23.78 and − 15.32 kcal/mol, respectively. The adsorption substantially altered the work function and bandgap of the defected nanosheets. However, the perfect BC3 experienced a change merely in bandgap during the drug adsorption—the work function change was slight. Thus, the defected nanosheets could be Φ-type and electronic sensors of CA, whereas the perfect nanosheet has the potential to be solely an electronic detector of CA. A larger dielectric constant led to a significant change in the adsorption energy. Furthermore, DV-BC3 considerably changed in magnetic characteristics due to the drug adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

N/A.

Code availability

N/A.

References

  1. Gunawan W, Rudiansyah M, Sultan MQ, Ansari MJ, Izzat SE, Al Jaber MS, Aravindhan S (2022) Effect of tomato consumption on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clinical Nutrition ESPEN. https://doi.org/10.1016/j.clnesp.2022.04.019

    Article  Google Scholar 

  2. Khoee S, Sadeghi A (2019) An NIR-triggered drug release and highly efficient photodynamic therapy from PCL/PNIPAm/porphyrin modified graphene oxide nanoparticles with the Janus morphology. RSC Advances 9(68):39780–39792. https://doi.org/10.1039/C9RA06058H

  3. Wu HS, Jiao H (2004) What is the most stable B24N24 fullerene? Chem Phys Lett 386(4–6):369–372

    Article  CAS  Google Scholar 

  4. Oku T, Narita I, Nishiwaki A (2004) Formation and structures of B36N36 and Y@ B36N36 nanocages studied by high-resolution electron microscopy and mass spectrometry. J Phys Chem Solids 65(2–3):369–372

    Article  CAS  Google Scholar 

  5. Pourbavarsad MS, Jalalieh BJ, Landes N, Jackson WA (2022) Impact of free ammonia and free nitrous acid on nitritation in membrane aerated bioreactors fed with high strength nitrogen urine dominated wastewater. J Environ Chem Eng 10(1):107001. https://doi.org/10.1016/j.jece.2021.107001

  6. Zou Q, Xing P, Wei L, Liu B (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N 6-methyladenosine sites from mRNA. RNA (Cambridge) 25(2):205–218. https://doi.org/10.1261/rna.069112.118

    Article  CAS  Google Scholar 

  7. Yang W, Liu W, Li X, Yan J, He W (2022) Turning chiral peptides into a racemic supraparticle to induce the self-degradation of MDM2. J Adv Res. https://doi.org/10.1016/j.jare.2022.05.009

    Article  PubMed  Google Scholar 

  8. Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z, …, Zhang BT (2020) A Loop‐Based and AGO‐Incorporated Virtual Screening Model Targeting AGO‐Mediated miRNA–mRNA Interactions for Drug Discovery to Rescue Bone Phenotype in Genetically Modified Mice. Adv Sci 7(13):1903451.https://doi.org/10.1002/advs.201903451

  9. Li H, Wang F (2021) Core-shell chitosan microsphere with antimicrobial and vascularized functions for promoting skin wound healing. Mater Des 204:109683. https://doi.org/10.1016/j.matdes.2021.109683

    Article  CAS  Google Scholar 

  10. Chen L, Huang Y, Yu X, Lu J, Jia W, Song J, …, Li M (2021) Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front Pharmacol 12:642900. https://doi.org/10.3389/fphar.2021.642900

  11. Yang W, Zhang H, Liu Y, Tang C, Xu X, …, Liu J (2022) Rh (iii)-catalyzed synthesis of dibenzo [b,d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones via C–H activation and C–C bond cleavage. RSC Adv 12(23):14435-14438. https://doi.org/10.1039/D2RA02074B

  12. Obireddy SR, Lai W (2021) Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv 28(1):1562–1568. https://doi.org/10.1080/10717544.2021.1955043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lai W (2020) Non-conjugated polymers with intrinsic luminescence for drug delivery. J Drug Deliv Sci Technol 59:101916. https://doi.org/10.1016/j.jddst.2020.101916

    Article  CAS  Google Scholar 

  14. Wang X, Tang S, Chai S, Wang P, Qin J, Pei W, Huang C (2021) Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr Polym 270:118342. https://doi.org/10.1016/j.carbpol.2021.118342

  15. Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE (2015) PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics 25:416

    Article  CAS  Google Scholar 

  16. Dong H, Zheng L, Yu P, Jiang Q, Wu Y, Huang C, Yin B (2019) Characterization and application of lignin–carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain Chem Eng 8(1):256–266. https://doi.org/10.1021/acssuschemeng.9b05290

    Article  CAS  Google Scholar 

  17. Ravisankar S, Vasudevan M, Gandhimathi M, Suresh B (1998) Reversed-phase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations. Talanta 46:1577–1581

    Article  CAS  Google Scholar 

  18. Trettin A, Zoerner AA, Böhmer A, Gutzki F-M, Stichtenoth DO, Jordan J et al (2011) Quantification of acetaminophen (paracetamol) in human plasma and urine by stable isotope-dilution GC–MS and GC–MS/MS as pentafluorobenzyl ether derivative. J Chromatogr B 879:2274–2280

    Article  CAS  Google Scholar 

  19. Burgot G, Auffret F, Burgot J-L (1997) Determination of acetaminophen by thermometric titrimetry. Anal Chim Acta 343:125–128

    Article  CAS  Google Scholar 

  20. Ruengsitagoon W, Liawruangrath S, Townshend A (2006) Flow injection chemiluminescence determination of paracetamol. Talanta 69:976–983

    Article  CAS  Google Scholar 

  21. Huang C, Su Y, Shi J, Yuan C, Zhai S, Yong Q (2019) Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. New J Chem 43(8):3520–3528. https://doi.org/10.1039/C9NJ00026G

    Article  CAS  Google Scholar 

  22. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700

    Article  CAS  Google Scholar 

  23. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  24. Huang C, Tang S, Zhang W, Tao Y, Lai C, Li X, Yong Q (2018) Unveiling the structural properties of lignin–carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain Chem Eng 6(9):12522–12531. https://doi.org/10.1021/acssuschemeng.8b03262

    Article  CAS  Google Scholar 

  25. Khoee S, Sadeghi A (2019) An NIR-triggered drug release and highly efficient photodynamic therapy from PCL/PNIPAm/porphyrin modified graphene oxide nanoparticles with the Janus morphology. RSC Adv 9(68):39780–39792. https://doi.org/10.1039/C9RA06058H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niknam B, Aboutalebi FH, Ma W, Nejad RM (2021) Effect of variations internal pressure on cracking radiant coils distortion. In Structures, vol 34. Elsevier, pp 4986–4998. https://doi.org/10.1016/j.istruc.2021.10.083

  27. Ma W (2021) Behavior of aged reinforced concrete columns under high sustained concentric and eccentric loads. Doctoral dissertation, University of Nevada, Las Vegas

  28. Jiang J, Zhang T, Chen D (2021) Analysis, design, and implementation of a differential power processing DMPPT with multiple buck–boost choppers for photovoltaic module. IEEE Trans Power Electron 36(9):10214–10223. https://doi.org/10.1109/TPEL.2021.3063230

    Article  Google Scholar 

  29. Jasim SA, Hadi JM, Opulencia MJC, Karim YS, Mahdi AB, Kadhim MM ... Falih KT (2022) MXene/metal and polymer nanocomposites: preparation, properties, and applications. J Alloys Compd 165404. https://doi.org/10.1016/j.jallcom.2022.165404

  30. Li X, Shang Z, Peng F, Li L, Zhao Y, Liu Z (2021) Increment-oriented online power distribution strategy for multi-stack proton exchange membrane fuel cell systems aimed at collaborative performance enhancement. J Power Sources 512:230512. https://doi.org/10.1016/j.jpowsour.2021.230512

    Article  CAS  Google Scholar 

  31. Guo H, Zhang Y (2020) Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer’s disease. IEEE Access 8:115383–115392. https://doi.org/10.1109/ACCESS.2020.3003424

    Article  Google Scholar 

  32. Liu R, Hu Y, Xu J, Cai A, Wu A, Chen L, …, Wang F (2021) Circulating circRNAs as Potential Biomarkers for Cancers. Oncologie 23(3). https://doi.org/10.32604/oncologie.2021.018514

  33. Nardelli MB, Yakobson BI, Bernholc J (1998) Mechanism of strain release in carbon nanotubes. Phys Rev B 57:R4277

    Article  Google Scholar 

  34. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Article  CAS  Google Scholar 

  35. Pan B, Yang W, Yang J (2000) Formation energies of topological defects in carbon nanotubes. Phys Rev B 62:12652

    Article  CAS  Google Scholar 

  36. Orellana W, Fuentealba P (2006) Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes. Surf Sci 600:4305–4309

    Article  CAS  Google Scholar 

  37. Rossato J, Baierle R, Orellana W (2007) Stability and electronic properties of vacancies and antisites in B C 2 N nanotubes. Phys Rev B 75:235401

    Article  Google Scholar 

  38. Berber S, Oshiyama A (2006) Reconstruction of mono-vacancies in carbon nanotubes: atomic relaxation vs. spin polarization. Phys B Condens Matter 376:272–5

    Article  Google Scholar 

  39. Li Y, Zhou Z, Golberg D, Bando Y, Schleyer PvR, Chen Z (2008) Stone− wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J Phys Chem C 112:1365–70

    Article  CAS  Google Scholar 

  40. Sivaraman R, Patra I, Opulencia MJC, Sagban R, Sharma H, Jalil AT, Ebadi AG (2022) Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries. J Electroanal Chem 116413. https://doi.org/10.1016/j.jelechem.2022.116413

  41. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  42. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–8

    Article  CAS  Google Scholar 

  43. Chupradit S, Nasution MK, Rahman HS, Suksatan W, Jalil AT, Abdelbasset W ... Bidares R (2022) Various types of electrochemical biosensors for leukemia detection and therapeutic approaches. Anal Biochem 114736. https://doi.org/10.1016/j.ab.2022.114736

  44. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattice Microst 100:350–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Huifang Liu: original draft, writing-review and editing, writing-software, methodology.

KeWei Wang: conceptualization, investigation, project administration, supervision.

Corresponding author

Correspondence to KeWei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, K. Utilization of boron carbide nanosheet in the recognition cathinone drug concentration in the human body. J Mol Model 28, 262 (2022). https://doi.org/10.1007/s00894-022-05268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05268-8

Keywords

Navigation