Skip to main content
Log in

Recent advances in theoretical studies on transition-metal–catalyzed regioselective C-H functionalization of indoles

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Indole compounds are widely found in natural products and drug candidates. The transition-metal–catalyzed regioselective C-H bond functionalization of indoles as the most efficient method for the synthesis of various functionalized indoles has been extensively studied in the past two decades due to its advantages of step economy and atom economy. In general, the catalysts included the transition-metals (Pd, Rh, Ru, Cu, Co, Fe, Zn, and Ga) and these reactions were accomplished with a remarkably wide range of coupling reagents for construction of various C–C and C-X (X = N, O, S) bonds. However, the general and important rules of the regioselectivity are not clear to date. Therefore, a comprehensive analysis through previous reported theoretical studies on transition-metal–catalyzed regioselective C-H bond functionalization of indoles was crucial and significant. In this review, we found that when the C-H bond activation process was the rate-determining step, the regioselectivity ordinarily occurred at the C7 or C4 positions (on benzene ring), and otherwise, the regioselectivity often occurred at C2 position (on pyrrole ring). For indoline substrates, the C-H bond functionalization occurred at the benzene ring.

Graphical abstract

General rules of the regioselectivities for transition-metal-catalyzed C-H bond functionalization of indoles. This review collects major advances in the transition-metal-catalyzed C-H bond functionalization of indoles and indolines

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

Data availability

There is no data available in the public domain related to this work.

Code availability

N/A.

References

  1. Sundberg R-J (1970) The chemistry of indoles. Academic Press, New York

    Google Scholar 

  2. Ban Y, Murakami Y, Iwasawa Y, Tsuchiya M, Takano N (1988) Indole Alkaloids in Medicine. Med Res Rev 8:231–308

    Article  CAS  PubMed  Google Scholar 

  3. Sundberg R-J (1996) Indoles. Academic Press, San Diego

    Google Scholar 

  4. Pindur U, Lemster T (2001) Advances in marine natural products of the indole and annelated indole series: chemical and biological aspects. Curr Med Chem 8:1681–1698

    Article  CAS  PubMed  Google Scholar 

  5. Kochanowska-Karamyan A-J, Hamann M-T (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 110:4489–4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Humphrey G-R, Kuethe J-T (2006) Practical methodologies for the synthesis of indoles. Chem Rev 106:2875–2911

    Article  CAS  PubMed  Google Scholar 

  7. Cacchi S, Fabrizi G (2011) Update 1 of: synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev 111:215–283

    Article  Google Scholar 

  8. Bandini M, Eichholzer A (2009) Catalytic functionalization of indoles in a new dimension. Angew Chem Int Ed 48:9608–9644

    Article  CAS  Google Scholar 

  9. Gul W, Hamann M (2005) Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 78:442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noland WE, Brown CD, DeKruif RD, Lanzatella NP, Gao SM, Zabronsky AE and Tritch KJ (2018) Condensation reactions of indole with acetophenones affording mixtures of 3,3-(1-phenylethane-1,1-diyl)bis(1H-indoles) and 1,2,3,4-tetrahydro-3-(1H-indol-3-yl)-1-methyl-1,3-diphenylcyclopent[b]indoles. Synthetic Communications 48:1755–1765

  11. Sandtorv AH (2015) Transition metal-catalyzed C-H activation of indoles. Adv Synth Catal 357:2403–2435

    Article  CAS  Google Scholar 

  12. Ma B et al (2009) Total synthesis of the antimitotic bicyclic peptide celogentin C. Angew Chem Int Ed 48:6104–6107

    Article  CAS  Google Scholar 

  13. Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon−carbon bonds by oxidizing two carbon-hydrogen bonds. Chem Rev 111:1215–1292

    Article  CAS  PubMed  Google Scholar 

  14. Ackermann L (2011) carboxylate-assisted transition-metal-catalyzed c−h bond functionalizations: mechanism and scope. Chem Rev 111:1315–1345

    Article  CAS  PubMed  Google Scholar 

  15. Bras JL, Muzart J (2011) intermolecular dehydrogenative heck reactions. Chem Rev 111:1170–1214

    Article  PubMed  CAS  Google Scholar 

  16. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev 110:1147–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115

    Article  CAS  Google Scholar 

  18. Lewis JC, Bergman RG, Ellman JA (2008) Direct functionalization of nitrogen heterocycles via Rh-catalyzed C−H bond activation. Acc Chem Res 41:1013–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding S, Jiao N (2011) Direct transformation of N, N-dimethylformamide to -CN: Pd-catalyzed cyanation of heteroarenes via C-H functionalization. J Am Chem Soc 133:12374–12377

    Article  CAS  PubMed  Google Scholar 

  20. Xu S, Huang X, Hong X, Xu B (2012) Palladium-assisted regioselective C-H cyanation of heteroarenes using isonitrile as cyanide source. Org Lett 14:4614–4617

    Article  CAS  PubMed  Google Scholar 

  21. Ding S, Jiao N (2012) N, N-Dimethylformamide: A Multipurpose Building Block. Angew Chem Int Ed 51:9226–9237

    Article  CAS  Google Scholar 

  22. Yu DG et al (2014) Cobalt(III)-Catalyzed Functionalization of unstrained carbon–carbon bonds through β-carbon cleavage of alcohols. J Am Chem Soc 136:17722–17725

    Article  CAS  PubMed  Google Scholar 

  23. Shu Z et al (2014) Iron(II)-Catalyzed direct cyanation of arenes with aryl(cyano)iodonium triflates. Angew Chem Int Ed 53:2186–2189

    Article  CAS  Google Scholar 

  24. Yang Y et al (2011) Lewis acid catalyzed direct cyanation of indoles and pyrroles with N-Cyano-N-phenyl-p-toluenesulfonamide (NCTS). Org Lett 13:5608–5611

    Article  CAS  PubMed  Google Scholar 

  25. Reddy BVS et al (2010) Pd(OAc)2-catalyzed C-H activation of indoles: a facile synthesis of 3-cyanoindoles. Tetrahedron Lett 51:3334–3336

    Article  CAS  Google Scholar 

  26. Yan G et al (2010) Palladium-catalyzed direct cyanation of indoles with K4[Fe(CN)6]. Org Lett 12:1052–1055

    Article  CAS  PubMed  Google Scholar 

  27. Beckers I, Krasniqi B, Kumar P, Escudero D, De Vos D (2021) Ligand-controlled selectivity in the Pd-catalyzed C−H/C−H cross-coupling of indoles with molecular oxygen. ACS Catal 11:2435–2444

    Article  CAS  Google Scholar 

  28. Li J, Ackermann L (2015) Cobalt-catalyzed C-H cyanation of arenes and heteroarenes. Angew Chem Int Ed 54:3635–3638

    Article  CAS  Google Scholar 

  29. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  30. Ikemoto H et al (2014) Pyrroloindolone synthesis via a Cp*CoIII-catalyzed redox-neutral directed C−H alkenylation/annulation sequence. J Am Chem Soc 136:5424–5431

    Article  CAS  PubMed  Google Scholar 

  31. Kou X et al (2013) Copper-catalyzed aromatic C-H bond cyanation by C-CN bond cleavage of inert acetonitrile. Chem Eur J 19:16880–16886

    Article  CAS  PubMed  Google Scholar 

  32. Cai Y et al (2011) Iron-catalyzed C-H fuctionalization of indoles. Adv Synth Catal 353:2939–2944

    Article  CAS  Google Scholar 

  33. Nagase Y, Sugiyama T, Nomiyama S, Yonekura K, Tsuchimoto T (2014) Zinc-catalyzed direct cyanation of indoles and pyrroles: nitromethane as a source of a cyano group. Adv Synth Catal 356:347–352

    Article  CAS  Google Scholar 

  34. Pan Z, Liu L, Xu S, Shen Z (2021) Ligand-free iridium-catalyzed regioselective C-H borylation of indoles. RSC Adv 11:5487–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okamoto K et al (2012) Practical synthesis of aromatic nitriles via gallium-catalysed electrophilic cyanation of aromatic C-H bonds. Chem Commun 48:3127–3129

    Article  CAS  Google Scholar 

  36. Qiu X, Shi Z et al (2019) PIII-chelation-assisted indole C7-arylation, olefination, methylation, and acylation with carboxylic acids/anhydrides by rhodium catalysis. Angew Chem Int Ed 58:1504–1508

    Article  CAS  Google Scholar 

  37. Wang Y, Shi Y, Shao J, Deng C (2021) Theoretical insights into the mechanism of rhodium-catalyzed, PIII-directed regioselective C H arylation of indole with anhydride. Int J Quantum Chem 121:e26475

    CAS  Google Scholar 

  38. Gorelsky S, Lapointe D, Fagnou K (2008) Analysis of the concerted metalation-deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J Am Chem Soc 130:10848–10849

    Article  CAS  PubMed  Google Scholar 

  39. Xu L et al (2016) Rhodium-catalyzed regioselective C7-functionalization of N-pivaloylindoles. Angew Chem Int Ed 55:321–325

    Article  CAS  Google Scholar 

  40. Han L, Ma X, Liu Y, Yu Z, Liu T (2018) Mechanistic insight into the C7-selective C-H functionalization of N-acyl indole catalyzed by a rhodium complex: a theoretical study. Org Chem Front 5:725–733

    Article  CAS  Google Scholar 

  41. Qiu X et al (2018) Rhodium-catalyzed, P-directed selective C7 arylation of indoles. Sci Adv 4:6468

    Article  CAS  Google Scholar 

  42. Mu X, Ge X, Zhong X, Han L, Liu T (2020) Mechanistic insight into the rhodium-catalyzed, P-directed selective C7 arylation of indoles: a DFT study. Molecular Catal 495:111147

    Article  CAS  Google Scholar 

  43. Borah AJ, Shi Z (2017) Palladium-Catalyzed Regioselective C-H fluoroalkylation of indoles at C4-position. Chem Commun 53:3945–3948

    Article  CAS  Google Scholar 

  44. Shi Y, Ma H, Shao J, Deng C (2021) Theoretical studies on the mechanism of Pd2+-catalyzed regioselective C-H alkylation of indole with MesICH2CF3OTf. J Mol Model 27:150

    Article  CAS  PubMed  Google Scholar 

  45. Mishra N-K, Kim I-S et al (2015) Rhodium(III)-Catalyzed selective C-H cyanation of indolinesand indoles with an easily accessible cyano source. Adv Synth Catal 357:1293–1298

    Article  CAS  Google Scholar 

  46. Deng C et al (2019) Theoretical studies on Rh(III)-catalyzed regioselective C-H bond cyanation of indole and indoline. Dalton Trans 48:168–175

    Article  CAS  Google Scholar 

  47. Wu X, Ji H et al (2018) Ruthenium(II)-Catalyzed regio- and stereoselective C-H Allylation of indoles with allyl alcohols. Org Lett 20:2224–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng C et al (2019) Theoretical studies on the mechanism of Ru(II)-catalyzed regioselective C-H allylation of indoles with allyl alcohols. Dalton Trans 48:9181–9186

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Lane BS, Sames D (2005) Direct C-arylation of free (NH)-indoles and pyrroles catalyzed by Ar−Rh(III) complexes assembled in situ. J Am Chem Soc 127:4996–4997

    Article  CAS  PubMed  Google Scholar 

  50. Santoro S, Himo F (2017) Mechanism and selectivity of rhodium-catalyzed C-H bond arylation of indoles Int J Quantum Chem e25526

  51. Wang X et al (2015) Access to six- and seven-membered 1,7-fused indolines via Rh(III)-catalyzed redox-neutral C7-selective C-H functionalization of indolines with alkynes and alkenes. J Org Chem 80:6238–6249

    Article  CAS  PubMed  Google Scholar 

  52. Han L, Zhang X, Wang X, Zhao F, Liu S, Liu T (2017) Mechanistic insights into the selective cyclization of indolines with alkynes and alkenes to produce six- and seven-membered 1,7-fused indolines via Rh(III) catalysis: a theoretical study. Org Biomol Chem 15:3938–3946

    Article  CAS  PubMed  Google Scholar 

  53. Becke AD (1993) Density functional thermochemistry. III. The Role of Exact Exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  54. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  55. Hay P-J, Wadt W-R (1985) Ab initio effective core potentials for molecular calculations–Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  Google Scholar 

  56. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Bioinformatics Center of Nanjing Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

H. Ma: writing original draft; T. Yu, L. Chi: literature collection; C. Huang, X. Li: literature analysis and investigation; R. Zhang: manuscript revision; C. Deng: writing and supervision.

Corresponding author

Correspondence to Chao Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Yu, T., Chi, L. et al. Recent advances in theoretical studies on transition-metal–catalyzed regioselective C-H functionalization of indoles. J Mol Model 28, 267 (2022). https://doi.org/10.1007/s00894-022-05265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05265-x

Keywords

Navigation