Skip to main content

Advertisement

Log in

Quantum mechanical study of interactions between sunscreen ingredients and nucleotide bases

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Interactions between the popular sunscreen ingredients oxybenzone and homosalate and DNA bases have been studied using density functional theory and ab initio methods. Low-energy structures for each sunscreen ingredient interacting with each nucleotide base in either a pi-stacked or hydrogen-bonded fashion were found. The binding energies are comparable to those for the Watson–Crick–Franklin Ade-Thy and Cyt-Gua pairs. Pi-stacked and hydrogen-bonded structures are comparable in energy, with hydrogen-bonded structures having a more negative counterpoise-corrected binding energy, while the final pi-stacked structures are lower in energy. This is due to a geometrical rearrangement required to form the hydrogen bonds that raise the total energy of the complex. It was also found that when using the M06-2X density functional, the STO-3G basis set favors hydrogen bonding, but 6-31G(d) and 6–31 + G(s) basis sets predict similar binding geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ramos S, Homem V, Arminda Alves LS (2015) Advances in analytical methods and occurrence of organic UV-filters in the environment - a review. Sci Total Environ 526:278–311. https://doi.org/10.1016/j.scitotenv.2015.04.055

    Article  CAS  PubMed  Google Scholar 

  2. Mitchelmore CL, He K, Gonsior M, Hain E, Heyes A, Cark C, Younger R, Schmitt-Kopplin P, Feerick A, Conway A, Blaney L (2019) Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. Sci Total Environ 670:398–410. https://doi.org/10.1016/j.scitotenv.2019.03.034

    Article  CAS  PubMed  Google Scholar 

  3. Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y (2016) Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S Virgin Islands. Arch Environ Contam Toxicol 70:265–288. https://doi.org/10.1007/s00244-015-0227-7

    Article  CAS  PubMed  Google Scholar 

  4. Lim HW, Arellano-Mendoza M-I, Stengel F (2017) Current challenges in photoprotection. J Am Acad Dermatol 76:S91–S99. https://doi.org/10.1016/j.jaad.2016.09.040

    Article  CAS  PubMed  Google Scholar 

  5. Matouskova K, Jerry DJ, Vandenberg LN (2020) Exposure to low doses of oxybenzone during perinatal development alters mammary gland morphology in male and female mice. Reprod Toxicol 92:66–77. https://doi.org/10.1016/j.reprotox.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  6. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 109:239–244. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240241/

  7. Wang SQ, Burnett ME, Lim HW (2011) Safety of oxybenzone: putting numbers into perspective. Arch Dermatol 147: 865–866. https://jamanetwork.com/journals/derm/articlepdf/1105240/dlt0711_865_866.pdf

  8. Hayden C, Roberts MS, Benson HAE (1997) Systemic absorption of sunscreen after topical application. Lancet 350: 863–864. https://www.sciencedirect.com/science/article/pii/S0140673605620326

  9. Hayden CGJ, Cross SE, Anderson C, Saunders NA, Roberts MS (2005) Sunscreen penetration of human skin and related keratinocyte toxicity after topical application. Skin Pharmacol Physiol 18:170–174. https://doi.org/10.1159/000085861

    Article  CAS  PubMed  Google Scholar 

  10. Janjua NR, Mogensen B, Andersson A-M, Petersen JH, Henriksen M, Skakkebaek NE, Wulf HC (2004) Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. J Invest Dematol 123:57–61. https://www.sciencedirect.com/science/article/pii/S0022202X1530885X

  11. Blüthgen N, Zucchi S, Fent K (2012) Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol Appl Pharmacol 263:184–194. https://doi.org/10.1016/j.taap.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  12. Colás-Ruiz NR, Ramirez G, Courant F, Gomez E, Hampel M, Lara-Martín PA (2022) Multi-omic approach to evaluate the response of gilt-head sea bream (Sparus aurata) exposed to the UV filter sulisobenzone. Sci Total Environ 803:150080. https://doi.org/10.1016/j.scitotenv.2021.150080

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Shah P, Wu F, Liu P, You J, Goss G (2021) Potentiation of lethal and sub-lethal effects of benzophenone and oxybenzone by UV light in zebrafish embryos. Aquat Toxicol 235:105835. https://doi.org/10.1016/j.aquatox.2021.105835

    Article  CAS  PubMed  Google Scholar 

  14. Vuckovic D, Tinoco AI, Ling L, Renicke C, Pringle JR, Mitch WA (2022) Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science 376:644–648. https://doi.org/10.1126/science.abn2600

    Article  CAS  PubMed  Google Scholar 

  15. dos Santos Almeida S, Lopes Rocha T, Qualhato G, de Almeida RobeiroOlivera L, Lira do Amaral C, da Conceição C, Teixeira de Sabóia-Morais SM, Cardoso Bailão EFL (2019) Acute exposure to environmentally relevant concentrations of benzophenone-3 induced genotoxicity in Poecilia reticulata. Aquat Toxicol 216:105293. https://doi.org/10.1016/j.aquatox.2019.105293

    Article  CAS  Google Scholar 

  16. Cuquerella MC, Lhiaubet-Vallet V, Cadet J, Miranda MA (2012) Benzophenone photosensitized DNA damage. Accounts Chem Rev 45:1558–1570. https://doi.org/10.1021/ar300054e

    Article  CAS  Google Scholar 

  17. Dumont E, Wibowo M, Roca-Sanjuán D, Garavelli M, Assfeld X, Monari A (2015) Resolving the benzophenone DNA-photosensitization mechanism at QM/MM level. J Phys Chem Lett 6:576–580. https://doi.org/10.1021/jz502562d

    Article  CAS  PubMed  Google Scholar 

  18. Yazar S, Gökçek Y (2018) Assessment of in vitro genotoxicity effect of homosalate in cosmetics. Marmara Pharm J 22:436–442. https://doi.org/10.12991/jrp.2018.84

    Article  CAS  Google Scholar 

  19. Holt EL, Krokidi KM, Turner MAP, Mishra P, Zwier TS (2020) Rodrigues NdN, Stavros VG. Phys Chem Chem Phys 22:15509–15519. https://doi.org/10.1039/d0cp02610g

    Article  CAS  PubMed  Google Scholar 

  20. Dumont E, Monari A (2013) Benzophenone and DNA: evidence for a double insertion mode and its spectral signature. J Phys Chem Lett 4:4119–4124. https://doi.org/10.1021/jz4021475

    Article  CAS  Google Scholar 

  21. Gattuso H, Dumont E, Chipot C, Monari A, Dehez F (2016) Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Phys Chem Chem Phys 18:33180–33186. https://doi.org/10.1039/c6cp06078a

    Article  CAS  PubMed  Google Scholar 

  22. Pettinari R, Marchetti F, Petrini A, Pettinari C, Lupidi G, Smoleński P, Scopelliti R, Riedel T, Dyson PJ (2016) From sunscreen to anticancer agent: ruthenium(II) arene avobenzone complexes display potent anticancer activity. Organometallics 35:3734–3742. https://doi.org/10.1021/acs.organomet.6b00694

    Article  CAS  Google Scholar 

  23. Gupta G, Cherukommu S, Srinivas G, Lee SW, Mun SH, Jung J, Nagesh N, Lee CY (2018) BODIPY-based Ru(II) and Ir(III) organometallic complexes of avobenzone, a sunscreen material: potent anticancer agents. J Inorg Biochem 189:17–29. https://doi.org/10.1016/j.jinorgbio.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  24. Ryan RT, Havrylyuk D, Stevens KC, Moore LH, Kim DY, Blackburn JS, Heidary DK, Selegue JP, Glazer EC (2020) Avobenzone incorporation in a diverse range of Ru(II) scaffolds produces potent potential antineoplastic agents. Dalton Trans 49:12161–12167. https://doi.org/10.1039/d0dt02016h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sherrill CD (2008) Computations of noncovalent π interactions. In: Lipkowitz KB, Cundari TR (eds) Reviews in computational chemistry, vol 26. Wiley, Hoboken, NJ, pp 1–38. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/9780470399545.ch1

  26. Sinnokrot MO, Sherrill CD (2004) Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, T-shaped, and parallel-displaced configurations. J Phys Chem A 108:10200–10207. https://pubs.acs.org/doi/https://doi.org/10.1021/jp0469517

  27. Parker TM, Sherrill CD (2015) Assessment of empirical models versus high-accuracy ab initio methods for nucleobase stacking: evaluating the importance of charge penetration. J Chem Theory Comput 11:4197–4204. https://pubs.acs.org/doi/https://doi.org/10.1021/acs.jctc.5b00588

  28. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT, 2010.

  29. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  30. Hehre WJ, Stewart RF, Pople JA (1969) Self-consistent molecular orbital methods. 1. Use of Gaussian expansions of Slater-type atomic orbitals. J Chem Phys 51:2657–2864. https://doi.org/10.1063/1.1672392

    Article  CAS  Google Scholar 

  31. Collins JB, PvR S, Binkley JS, Pople JA (1976) Self-consistent molecular orbital methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J Chem Phys 64:5142–5151. https://doi.org/10.1063/1.432189

    Article  CAS  Google Scholar 

  32. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  33. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  34. Hariharan PC, Pople JA (1973) Influence of polarization functions on molecular-orbital hydrogenation energies. Theor Chem Acc 28:213–222. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  35. Wałęsa R, Ptak T, Siodłak D, Kupka T, Broda M (2014) Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin. Magn Reson Chem 52:298–305. https://doi.org/10.1002/mrc.4064

    Article  CAS  PubMed  Google Scholar 

  36. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  37. Miertuš S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245. https://doi.org/10.1016/0301-0104(82)85072-6

    Article  Google Scholar 

  38. Pascual-Ahuir JL, Silla E, Tuñón I (1994) GEPOL: an improved description of molecular-surfaces. 3. A new algorithm for the computation of a solvent-excluding surface. J Comp Chem 15:1127–1138. https://doi.org/10.1002/jcc.540151009

    Article  CAS  Google Scholar 

  39. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  40. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  41. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J Chem Phys 105:11024–11031. https://doi.org/10.1063/1.472902

    Article  CAS  Google Scholar 

  42. Frisch MJ, Head-Gordon M, Pople JA (1990) Direct MP2 gradient method. Chem Phys Lett 166:275–280. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  43. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289. https://doi.org/10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  44. Head-Gordon M, Pople JA, Frisch MJ (1998) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506. https://doi.org/10.1016/0009-2614(88)85250-3

    Article  Google Scholar 

  45. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth order storage: theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128. https://doi.org/10.1016/0009-2614(94)00116-2

    Article  CAS  Google Scholar 

  46. Saebø S, Almlöf J (1989) Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem Phys Lett 154:83–89. https://doi.org/10.1016/0009-2614(89)87442-1

    Article  Google Scholar 

  47. Yanson IK, Teplitsky AB, Sukhodub LF (1979) Experimental studies of molecular interactions between nitrogen bases of nucleic acids. Biopolymers 18:1149–1170. https://onlinelibrary.wiley.com/doi/epdf/https://doi.org/10.1002/bip.1979.360180510

  48. Mo L (2006) Probing the nature of hydrogen bonds in DNA base pairs. J Mol Model 12:665–672. https://doi.org/10.1007/s00894-005-0021-y

    Article  CAS  PubMed  Google Scholar 

  49. Kawahara S-i, Uchimaru T (2000) Basis set effect on hydrogen bond stabilization energy estimation of the Watson-Crick type nucleic acid base pairs using medium-size basis sets: single point MP2 evaluations at the HF optimized structures. Phys Chem Chem Phys 2:2869–2872. https://doi.org/10.1039/b001507p

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research (grant number 58738-DNI6).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Kyle Volk and Leah Casabianca. The first draft of the manuscript was written by Leah Casabianca and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leah B. Casabianca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1468 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volk, K.R., Casabianca, L.B. Quantum mechanical study of interactions between sunscreen ingredients and nucleotide bases. J Mol Model 28, 243 (2022). https://doi.org/10.1007/s00894-022-05253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05253-1

Keywords

Navigation