Skip to main content
Log in

Unveiling the effect of 2D silagraphene structural diversity on electronic properties: DFT, DOS, and ELF studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract 

Recently, fully π-functional two-dimensional (2D) materials have been reported for electronic device applications. Graphene is one of these 2D materials that is attributed to 2D electron confinement effects and exhibits an aromatic character; however, it is characterized by vanishing the bandgap energy. Hence, research was focused on the discovery of graphene-based 2D materials to reduce the bandgap energy. Herein, we investigate the silagraphene structures (SixCy) using DFT calculations to undertake and improve structural, physico-chemical, and electronic properties. Various types of 2D networks have been investigated by considering C–C and C–Si bonds in relative positions. Both conjugation and hyperconjugation phenomenon have been deeply examined and it seemed that they take advantage of each other depending on the C–C and C–Si bond positions. Localized orbital locator (LOL) and electron localization function (ELF) were also performed to examine the electronic densities in the investigated 2D networks and unveil the electronic properties of the studied materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary material.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233

    Article  CAS  PubMed  Google Scholar 

  2. Geim AK (2009) Graphene: Status and prospects. Science 324:1529–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  3. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204. https://doi.org/10.1038/nature04235

    Article  CAS  PubMed  Google Scholar 

  4. Wang ZF, Liu Z, Liu F (2013) Quantum anomalous Hall effect in 2D organic topological insulators. Phys Rev Lett 110:196801. https://doi.org/10.1103/PhysRevLett.110.196801

    Article  CAS  PubMed  Google Scholar 

  5. Zhao H, Zhang CW, Ji WX, Zhang RW, Li SS, Yan SS, Zhang BM, Li P, Wang PJ (2016) Unexpected giant-gap quantum spin Hall insulator in chemically decorated plumbene monolayer. Sci Rep 6(1):20152. https://doi.org/10.1038/srep20152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 556:80. https://doi.org/10.1038/nature26160

    Article  CAS  PubMed  Google Scholar 

  7. Laayati M, Mekkaoui AA, Fkhar L, Ait Ali M, Anane H, Bahsis L, El Firdoussi L, El Houssame S (2022) Synergistic effect of GO/SrFe12O19 as magnetic hybrid nanocatalyst for regioselective ring-opening of epoxides with amines under eco-friendly conditions. RSC Adv 12:11139–11154. https://doi.org/10.1039/D2RA00984F

  8. Wang B, Iocozzia J, Zhang M, Ye M, Yan S, Jin H, Wang ZZG, Lin Z (2019) The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem Soc Rev 48:4854. https://doi.org/10.1039/C9CS00254E

    Article  CAS  PubMed  Google Scholar 

  9. Fan F R, Wu W (2019) Emerging devices based on two-dimensional monolayer materials for energy harvesting. Research 2019:7367828. https://doi.org/10.34133/2019/7367828

  10. Drissi LB, Ramadan FZ, Ferhati H, Djeffal F, Kanga NBJ (2020) New highly efficient 2D SiC UV-absorbing material with plasmonic light trapping. J Phys Condens Matter 32(2):025701

    Article  CAS  Google Scholar 

  11. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308. https://doi.org/10.1126/science.1156965

    Article  CAS  PubMed  Google Scholar 

  12. Wang W, Klots A, Yang Y, Li W, Kravchenko II, Briggs DP, Bolotin KI, Valentine J (2015) Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl Phys Lett 106:181104. https://doi.org/10.1063/1.4919760

    Article  CAS  Google Scholar 

  13. CHABI, Sakineh, KADEL, Kushal. (2020) Two-dimensional silicon carbide: emerging direct band gap semiconductor Nanomaterials 10:2226. https://doi.org/10.3390/nano10112226

  14. Zhou LJ, Zhang YF, Wu LM (2013) SiC2 siligraphene and nanotubes: novel donor materials in excitonic solar cells. Nano Lett 13:5431–5436. https://doi.org/10.1021/nl403010s

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Ding Y, Gu S, Zhu S, Zhou X, Ding Y (2020) dentification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Res Int 137:109339. https://doi.org/10.1016/j.foodres.2020.109339

    Article  CAS  PubMed  Google Scholar 

  16. Yu M, Jayanthi C, Wu S (2010) Geometric and electronic structures of graphitic-like and tubular silicon carbides: ab-initio studies. Phys Rev B 82:075407. https://doi.org/10.1103/PhysRevB.82.075407

    Article  CAS  Google Scholar 

  17. Yan X, Xin Z, Liu J, Yang G, Tian L, Yu M (2017) The structural stability and the strain-induced electronic properties of α-Si1C7-graphyne like monolayer Comput. Mater Sci 135:9–17. https://doi.org/10.1016/j.commatsci.2017.04.002

    Article  CAS  Google Scholar 

  18. Belarouci S, Ouahrani T, Benabdallah N, Morales-Garcia A, Belabbas I (2018) Two-dimensional silicon carbide structure under uniaxial strains, electronic and bonding analysis Comput. Mater Sci 151:288–295. https://doi.org/10.1016/j.commatsci.2018.05.020

    Article  CAS  Google Scholar 

  19. Babar V, Sharma S, Udo S (2019) New paradigm for gas sensing by two-dimensional materials. The Journal of Physical Chemistry C 123:13104–13109. https://doi.org/10.1021/acs.jpcc.9b01313

    Article  CAS  Google Scholar 

  20. Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80:155453. https://doi.org/10.1103/PhysRevB.80.155453

    Article  CAS  Google Scholar 

  21. Shi Z, Zhang Z, Kutana A, Yakobson BI (2015) Predicting two-dimensional silicon carbide monolayers. ACS Nano 9:9802–9809. https://doi.org/10.1021/acsnano.5b02753

    Article  CAS  PubMed  Google Scholar 

  22. Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58:1244–1315. https://doi.org/10.1016/j.pmatsci.2013.04.003

    Article  CAS  Google Scholar 

  23. West R (2002) Multiple bonds to silicon: 20 years later. Polyhedron 21(5–6):467–472. https://doi.org/10.1016/s0277-5387(01)01017-8

    Article  CAS  Google Scholar 

  24. Yin MT, Cohen ML (1984) Structural theory of graphite and graphitic silicon. Phys Rev B 29(12):6996–6998. https://doi.org/10.1103/PhysRevB.29.6996

    Article  CAS  Google Scholar 

  25. Masri P (2002) Silicon carbide and silicon carbide-based structures. Surf Sci Rep 48(1–4):1–51. https://doi.org/10.1016/s0167-5729(02)00099-7

    Article  CAS  Google Scholar 

  26. Shi Z, Zhang Z, Kutana A, Yakobson BIP (2015) Two-dimensional silicon carbide monolayers. ACS Nano 9(10):9802–9809. https://doi.org/10.1021/acsnano.5b02753

    Article  CAS  PubMed  Google Scholar 

  27. Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76(8):85407. https://doi.org/10.1103/PhysRevB.76.085407

    Article  CAS  Google Scholar 

  28. Sun L, Wang B, Wang Y (2018) A novel silicon carbide nanosheet for high-performance humidity sensor. Adv Mater Interfaces 5(6):1701300. https://doi.org/10.1002/admi.201701300

    Article  CAS  Google Scholar 

  29. Chen Q, Jiang Y, Wang Y, Li H, Yu C, Cui J, Qin Y, Sun J, Yan J, Zheng H (2019) Enhanced supercapacitive performance of novel ultrathin SiC nanosheets directly by liquid phase exfoliation. Inorg Chem Commun 106:174–179. https://doi.org/doi.org/10.1016/j.inoche.2019.06.009

    Article  CAS  Google Scholar 

  30. Farmanzadeh D, Ardehjani NA (2018) Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: a computational study. Appl Surf Sci 462:685–692. https://doi.org/10.1016/j.apsusc.2018.08.150

    Article  CAS  Google Scholar 

  31. Sun L, Han C, Wu N, Wang B, Wang Y (2018) High temperature gas sensing performances of silicon carbide nanosheets with an n-p conductivity transition. RSC Adv 8(25):13697–13707. https://doi.org/10.1039/C8RA02164C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun L, Wang B, Wang YA (2019) Schottky-junction-based platinum nanoclusters@ silicon carbide nanosheet as long-term stable hydrogen sensors. Appl Surf Sci 473:641–648. https://doi.org/10.1016/j.apsusc.2018.12.193

    Article  CAS  Google Scholar 

  33. Wang N, Tian Y, Zhao J, Jin P (2016) CO oxidation catalyzed by silicon carbide (SiC) monolayer: a theoretical study. J Mol Graph Model 66:196–200. https://doi.org/10.1016/j.jmgm.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  34. Nematollahi, P., Esrafili, M.D. Catalytic activity of silicon carbide nanotubes and nanosheets for oxidation of CO: a DFT study. New Journal of Chemistry 40(3):2775–2784. https://doi.org/10.1039/C5NJ02748A

  35. Zhang P, Xiao BB, Hou XL, Zhu YF, Jiang Q (2014) Layered sic sheets: a potential catalyst for oxygen reduction reaction. Sci Rep 4(1):1–8. https://doi.org/10.1038/srep03821

    Article  CAS  Google Scholar 

  36. wen Feng, J., jie Liu, Y., and xiang Zhao, J. (2015) Layered SiC sheets: a promising metal-free catalyst for NO reduction. J Mol Graph Model 60:132–141. https://doi.org/10.1038/srep03821

    Article  CAS  Google Scholar 

  37. Chabi S, Guler Z, Brearley AJ, Benavidez AD, Luk TS (2021) The creation of true two-dimensional silicon carbide. Nanomaterials 11(7):1799. https://doi.org/10.3390/nano11071799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. 121:150–166

  39. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  40. Lee C, Yan W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  41. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods Supplementary functions for Gaussian basis sets. The Journal of chemical physics 80(7):3265–3269. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  42. Curtiss LA, McGrath MP, Blaudeau J-P, Davis NE, Binning RC, Radom L Jr (1995) Extension of Gaussian-2 theory to molecules containing third erow atoms GaKr. J Chem Phys 103:6104–6113. https://doi.org/10.1063/1.470438

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101

    Article  Google Scholar 

  44. Dunning TH Jr, J, (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  45. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: Natural bond orbital analysis program. Journal of computational chemistry 34(16):1429–1437. https://doi.org/10.1002/jcc.23266

    Article  CAS  PubMed  Google Scholar 

  46. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  47. Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  48. O’Boyle N, Tenderholt A, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  PubMed  Google Scholar 

  49. Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Hou JG (2008) Electronic structures of SiC nanoribbons. J Chem Phys 129(17):174114. https://doi.org/10.1063/1.3006431

    Article  CAS  PubMed  Google Scholar 

  50. Lou P, Lee JY (2009) Band structures of narrow zigzag silicon-carbon nanoribbons. J Phys Chem C 113(29):12637–12640. https://doi.org/10.1021/jp903155r

    Article  CAS  Google Scholar 

  51. Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S (2009) Two- and onedimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804–236814. https://doi.org/10.1103/PhysRevLett.102.236804

    Article  CAS  PubMed  Google Scholar 

  52. Guzman-Verri GG, Lew Yan Voon LC (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131–075210. https://doi.org/10.1103/PhysRevB.76.075131

    Article  CAS  Google Scholar 

  53. Roome NJ, Carey JD (2014) Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl Mater Interfaces 6:7743–7750. https://doi.org/10.1021/am501022x

    Article  CAS  PubMed  Google Scholar 

  54. Nijamudheen A, Bhattacharjee R, Choudhury S, El DA (2015) ectronic and chemical properties of germanene: the crucial role of buckling. J Phys Chem C 119:3802–3809. https://doi.org/10.1021/jp511488m

    Article  CAS  Google Scholar 

  55. Soto JR, Molina B, Castro JJ (2015) Reexamination of the origin of the pseudo Jahn-Teller puckering instability in silicone. Phys Chem Chem Phys 17:7624–7628. https://doi.org/10.1039/C4CP05912C

    Article  CAS  PubMed  Google Scholar 

  56. Soto JR, Molina B, Castro JJ (2014) Nonadiabatic structure instability of planar hexagonal gold cluster cation Au7 and its spectral signature. RSC Adv 4:8157–8164. https://doi.org/10.1039/C3RA46463F

    Article  CAS  Google Scholar 

  57. Soto JR, Molina 1B, Castro JJ (2016) Strong pseudo jahneteller effect on the single hexagonal unit of germanene. MRS Adv 1:1591–1596. https://doi.org/10.1557/adv.2016.14

    Article  CAS  Google Scholar 

  58. Chataoui H, Choukri H, Maatallah M, Cherqaoui D, Jarid A (2017) The hyperconjugation effect on the graphene counterparts based on silicon and germanium. Curr Appl Phys 17:1310–1315. https://doi.org/10.1016/j.cap.2017.06.015

    Article  Google Scholar 

  59. Costa CD, Morbec JM (2011) Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation. J Phys Condens Matter 23:205504. https://doi.org/10.1088/0953-8984/23/20/205504

    Article  CAS  PubMed  Google Scholar 

  60. Zhao M, Zhang R (2014) Two-dimensional topological insulators with binary honeycomb lattices: Si C 3 siligraphene and its analogs. Phys Rev B 89:195427. https://doi.org/10.1103/PhysRevB.89.195427

    Article  CAS  Google Scholar 

  61. Qin X, Liu Y, Li X, Xu J, Chi B, Zhai D, Zhao X (2015) Origin of Dirac cones in SiC silagraphene: a combined density functional and tight-binding study. J Phys Chem Lett 6:1333–1339. https://doi.org/10.1021/acs.jpclett.5b00365

    Article  CAS  PubMed  Google Scholar 

  62. Qin X, Wu Y, Liu Y, Chi B, Li X, Wang Y, Zhao X (2017) Origins of Dirac cone formation in AB3 and A3B (A, B = C, Si, and Ge) binary monolayers. Sci Rep 7:10546. https://doi.org/10.1038/s41598-017-10670-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen HM, Hieu N, Ponce-Pérez R, J.F. Rivas-Silva Gregorio H. Cocoletzi, (2020) Transition from indirect to direct band gap in SiC monolayer by chemical functionalization: a first principles study. Superlattices Microstruct 137:106320. https://doi.org/10.1016/j.spmi.2019.106320

    Article  CAS  Google Scholar 

  64. Kilic ME, Lee KR (2021) Novel two-dimensional Group-IV carbides containing C2 dimers: sizable direct band gap, high carrier mobility, and anisotropic properties for nanoelectronics. Carbon 181:421–432. https://doi.org/10.1016/j.carbon.2021.04.092

    Article  CAS  Google Scholar 

  65. Ali M, Islam MJ, Rafid M, Jeetu RR, Roy R, Chakma U (2021) The computational screening of structural, electronic, and optical properties for SiC, 94Sn0. 06C, and Si0. 88n0. 12C lead-free photovoltaic inverters using DFT functional of first principle approach. Eurasian Chem Commun 3:327–338. https://doi.org/10.22034/ecc.2021.278690.1154

    Article  CAS  Google Scholar 

  66. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  67. Fan D, Lu S, Guo Y, Hu X (2017) Novel bonding patterns and optoelectronic properties of the two-dimensional SixCy monolayers. J Mater Chem C 5(14):3561–3567. https://doi.org/10.1039/c6tc05415c

    Article  CAS  Google Scholar 

  68. Heyd J, Scuseria G (2004) Efficient hybrid density functional calculations in solids: the HS-Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192. https://doi.org/10.1063/1.1760074

    Article  CAS  PubMed  Google Scholar 

  69. Makov G (1995) Chemical hardness in density functional theory. J Phys Chem 99:9337–9339. https://doi.org/10.1021/j100023a006

    Article  CAS  Google Scholar 

  70. Yuksel N, Kose A, Ferdi Fellah M (2022) A Density Functional Theory study for adsorption and sensing of 5-Fluorouracil on Ni-doped boron nitride nanotube Materials Science in Semiconductor Processing 137:106183. https://doi.org/10.1016/j.mssp.2021.106183.

  71. Xu H, Xu CD, Yifeng W (2017) Natural indices for the chemical hardness/softness of metal cations and ligands. ACS Omega 2(10):7185–7193. https://doi.org/10.1021/acsomega.7b01039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686. https://doi.org/10.1038/371683a0

    Article  CAS  Google Scholar 

  73. Jacobsen H (2008) Localized-orbital locator (LOL) profiles of chemical bonding. Canadian J Chem 86(7):695–702. https://doi.org/10.1139/v08-052

    Article  CAS  Google Scholar 

  74. Kaviani S, Izadyar M (2022) First-principles study of the binding affinity of monolayer BC6N nanosheet: Implications for drug delivery. Mater Chem Phys 276:125375. https://doi.org/10.1016/j.matchemphys.2021.125375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hassan Chataoui: performing calculations, software, writing an original draft. Lahoucine Bahsis: conceptualization and interpretation of the results. Hafid Anane: conceptualization and interpretation of the results. Abdellah Jarid: conceptualization and interpretation of the results. Soufiane El Houssame: methodology, conceptualization, writing—review and editing, and supervision.

Corresponding author

Correspondence to Soufiane El Houssame.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The present research is a part of a Ph.D. thesis work by the author Hassan Chataoui.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chataoui, H., Bahsis, L., Anane, H. et al. Unveiling the effect of 2D silagraphene structural diversity on electronic properties: DFT, DOS, and ELF studies. J Mol Model 28, 250 (2022). https://doi.org/10.1007/s00894-022-05251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05251-3

Keywords

Navigation