Skip to main content
Log in

Multiscale modeling of thermomechanical properties of stereoregular polymers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Multiscale coarse-grained (CG) models are expected to play the critical roles in molecular simulations of complex polymers. However, this poses a great challenge for accurately simulating their thermomechanical properties, for which excellent representability and transferability are required for the CG potentials. In this work, virtual sites and elastic network bonds are introduced to improve the structural and volumetric property–based CG models including explicit electrostatic interactions, which is exemplarily applied to the iso- and syndio-tactic poly(methyl methacrylate). A variety of thermomechanical properties of the two stereoregular polymer bulks are reasonably reproduced by the extensive molecular dynamics simulations with the so-parameterized CG potentials. In particular, the attractive nature of electrostatic interactions and tacticity effects on glass transition temperatures (Tg) are well captured. Furthermore, stronger electrostatic interactions lead to higher mass density and bulk modulus, and their effects on Young’s modulus, Poisson’s ratio, and shear modulus depend upon the chain tacticity. It is also demonstrated that all these elastic constants can be effectively modulated by imposing external electric field. The proposed multiscale scheme can be very valuable to molecular designs of polar polymer materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings can be obtained from the author if required.

Code availability

Not applicable.

References

  1. Tschop W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. I Coarse-graining procedure for polycarbonates. Acta Polymer 49:61–74

    Article  Google Scholar 

  2. Fritz D, Harmandaris VA, Kremer K, van der Vegt NFA (2009) Coarse-grained polymer melts based on isolated atomistic chains: simulation of polystyrene of different tacticities. Macromolecules 42:7579–7588

    Article  CAS  Google Scholar 

  3. Muller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3:754–769

    Article  CAS  Google Scholar 

  4. Klein ML, Shinoda W (2008) Large-scale molecular dynamics simulations of self-assembling systems. Science 321:798–800

    Article  CAS  PubMed  Google Scholar 

  5. Voth GA (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press, London

    Google Scholar 

  6. Brini E, Algaer EA, Ganguly P, Li C, Rodrıguez-Ropero F, van der Vegt NFA (2013) Systematic coarse-graining methods for soft matter simulations – a review. Soft Matter 9:2108–2119

    Article  CAS  Google Scholar 

  7. Moore TC, Iacovella CR, McCabe C (2014) Derivation of coarse-grained potentials via multistate iterative boltzmann inversion. J Chem Phys 140:224104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huang H, Wu L, Xiong H, Sun H (2019) A transferrable coarse-grained force field for simulations of polyethers and polyether blends. Macromolecules 52:249–261

    Article  CAS  Google Scholar 

  9. Xia W, Song J, Jeong C, Hsu DD, Frederick R, Phelan J, Douglas JF, Keten S (2017) Energy-renormalization for achieving temperature transferable coarse-graining of polymer dynamics. Macromolecules 50:8787–8796

    Article  CAS  Google Scholar 

  10. Kempfer K, Devemy J, Dequidt A, Couty M, Malfreyt P (2019) Realistic coarse-grain model of cis-1,4-polybutadiene: from chemistry to rheology. Macromolecules 52:2736–2747

    Article  CAS  Google Scholar 

  11. Fu C-C, Kulkarni PM, Shell MS, Leal LG (2012) A test of systematic coarse-graining of molecular dynamics simulations: thermodynamic properties. J Chem Phys 137:164106

    Article  PubMed  CAS  Google Scholar 

  12. Root SE, Savagatrup S, Pais CJ, Arya G, Lipomi DJ (2016) Predicting the mechanical properties of organic semiconductors using coarse-grained molecular dynamics simulations. Macromolecules 49:2886–2894

    Article  CAS  Google Scholar 

  13. Xiao Q, Guo H (2016) Transferability of a coarse-grained atactic polystyrene model: the non-bonded potential effect. Phys Chem Chem Phys 18:29808–29824

    Article  CAS  PubMed  Google Scholar 

  14. Hsu DD, Xia W, Arturo SG, Keten S (2015) Thermomechanically consistent and temperature transferable coarse-graining of atactic polystyrene. Macromolecules 48:3057–3068

    Article  CAS  Google Scholar 

  15. Wu C (2018) Multiscale modeling of glass transition in polymeric films: application to stereoregular poly(methyl methacrylate)s. Polymer 146:91–100

    Article  CAS  Google Scholar 

  16. Wu C (2018) Multiscale modeling scheme for simulating polymeric melts: application to poly(ethylene oxide). Macromol Theory Simul 27:1700066

    Article  CAS  Google Scholar 

  17. Cao Z, Voth GA (2015) The multiscale coarse-graining method Xi Accurate interactions based on the centers of charge of coarse-grained sites. J Chem Phys 143:243116

    Article  PubMed  CAS  Google Scholar 

  18. Wu C, Li K, Ning X, Zhang L (2021) An enhanced scheme for multiscale modeling of thermomechanical properties of polymer bulks. J Phys Chem B 125:8612–8626

    Article  CAS  PubMed  Google Scholar 

  19. Lyulin SV, Gurtovenko AA, Larin SV, Nazarychev VM, Lyulin AV (2013) Microsecond atomic-scale molecular dynamics simulations of polyimides. Macromolecules 46:6357–6363

    Article  CAS  Google Scholar 

  20. Falkovich SG, Lyulin SV, Nazarychev VM, Larin SV, Gurtovenko AA, Lukasheva NV, Lyulin AV (2014) Influence of the electrostatic interactions on the thermophysical properties of polyimides: molecular-dynamics simulations. J. Polym. Sci. Part B: Polym Phys 52:640–646

    Article  CAS  Google Scholar 

  21. Lyulin SV, Larin SV, Gurtovenko AA, Nazarychev VM, Falkovich SG, Yudin VE, Svetlichnyi VM, Gofman IV, Lyulin AV (2014) Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter 10:1224–1232

    Article  CAS  PubMed  Google Scholar 

  22. Nazarychev VM, Lyulin AV, Larin SV, Gofman IV, Kenny J, Lyulin SV (2016) Correlation between the high-temperature local mobility of heterocyclic polyimides and their mechanical properties. Macromolecules 49:6700–6710

    Article  CAS  Google Scholar 

  23. Nazarychev VM, Dobrovskiy AY, Larin SV, Lyulin AV, Lyulin SV (2018) Simulating local mobility and mechanical properties of thermostable polyimides with different dianhydride fragments. J. Polym. Sci. Part B: Polym Phys 56:375–382

    Article  CAS  Google Scholar 

  24. Soldera A, Grohens Y (2002) Local dynamics of stereoregular pmmas using molecular simulation. Macromolecules 35:722–726

    Article  CAS  Google Scholar 

  25. Behbahani AF, Allaei SMV, Motlagh GH, Eslami H, Harmandaris VA (2018) Structure and dynamics of stereo-regular poly(methyl-methacrylate) melts through atomistic molecular dynamics simulations. Soft Matter 14:1449–1464

    Article  CAS  Google Scholar 

  26. Gordievskaya YD, Budkov YA, Kramarenko EY (2018) An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: theory and computer simulations. Soft Matter 14:3232–3235

    Article  CAS  PubMed  Google Scholar 

  27. Karasawa N, Dasgupta S, Goddard WA III (1991) Mechanical properties and force field parameters for polyethylene crystal. J Phys Chem 95:2260–2272

    Article  CAS  Google Scholar 

  28. Strelnikov IA, Zubova EA, Mazo MA, Manevich LI (2017) Coarse-grained polyethylene: Including cross terms in bonded interactions and introducing anisotropy into the model for the orthorhombic crystal. Polym Sci Ser A 59:242–252

    Article  CAS  Google Scholar 

  29. Filipe HAL, Esteves MIM, CsA H, Antunes FE (2020) Effect of protein flexibility from coarse-grained elastic network parameterizations on the calculation of free energy profiles of ligand binding. J Chem Theory Comput 16:4734–4743

    Article  CAS  PubMed  Google Scholar 

  30. Koehl P, Orland H, Delarue M (2021) Parameterizing elastic network models to capture the dynamics of proteins. J Comput Chem 42:1643–1661

    Article  CAS  PubMed  Google Scholar 

  31. Kumar S, Pattanayek SK (2019) Effect of multiaxial tensile deformation on the mechanical properties of semiflexible polymeric samples. J Phys Chem B 123:9238–9249

    Article  CAS  PubMed  Google Scholar 

  32. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: Fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  33. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4:435–447

    Article  CAS  PubMed  Google Scholar 

  34. Martinez JM, Martinez L (2003) Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem 24:819–825

    Article  CAS  PubMed  Google Scholar 

  35. Martinez L, Andrade R, Birgin EG, Martinez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  CAS  PubMed  Google Scholar 

  36. Ruhle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5:3211–3223

    Article  PubMed  CAS  Google Scholar 

  37. Patrone PN, Dienstfrey A, Browning AR, Tucker S, Christensen S (2016) Uncertainty quantification in molecular dynamics studies of the glass transition temperature. Polymer 87:246–259

    Article  CAS  Google Scholar 

  38. Dalnoki-Veress K, Forrest JA, Murray C, Gigault C, Dutcher JR (2001) Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Phys Rev E 63:031801

    Article  CAS  Google Scholar 

  39. Shenogina NB, Tsige M, Patnaik SS, Mukhopadhyay SM (2012) Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules 45:5307–5315

    Article  CAS  Google Scholar 

  40. Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford

    Google Scholar 

  41. Ellis B, Smith R (2009) Polymers a property database. CRC Press, London

    Google Scholar 

  42. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (pmma). Polym Rev 55:678–705

    Article  CAS  Google Scholar 

  43. Fan CF, Gagin T, Shi W (1997) Local chain dynamics of a model polycarbonate near glass transition temperature: a molecular dynamics simulation. Macromol Theory Simul 6:82–102

    Article  Google Scholar 

  44. Soldera A (1998) Comparison between the glass transition temperatures of the two pmma tacticities: a molecular dynamics simulation point of view. Macromol Symp 133:21–32

    Article  CAS  Google Scholar 

  45. Wu C (2020) Tacticity effects on the bulk modulus of poly(methyl methacrylate) explored by coarse-grained simulations. J Phys Chem B 124:10811–10821

    Article  CAS  PubMed  Google Scholar 

  46. Lyulin AV, Balabaev NK, Michels MAJ (2003) Molecular-weight and cooling-rate dependence of simulated tg for amorphous polystyrene. Macromolecules 36:8574–8575

    Article  CAS  Google Scholar 

  47. Bicerano J (2002) Prediction of polymer properties. Marcel Dekker Inc, New York

    Book  Google Scholar 

  48. Quach A, Wilson PS, Simha R (1974) The effects of stereoregularity on the pressure-volume-ternperature and related properties of poly(methy1 methacrylate). J Macromol Sci-Phys B9:533–550

    Article  Google Scholar 

  49. Metatla N, Soldera A (2006) Computation of densities, bulk moduli and glass transition temperatures of vinylic polymers from atomistic simulation. Mol Simul 32:1187–1193

    Article  CAS  Google Scholar 

  50. Yeh I-C, Rinderspacher BC, Andzelm JW, Cureton LT, Scala JL (2014) Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer 55:166–174

    Article  CAS  Google Scholar 

  51. Theodorou DN, Suter UW (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 19:139–154

    Article  CAS  Google Scholar 

  52. Lempesis N, in ‘t Veld PJ, Rutledge GC (2016) Atomistic simulation of the structure and mechanics of a semicrystalline polyether. Macromolecules 49:5714–5726

    Article  CAS  Google Scholar 

  53. Darden T, York D, Pedersen L (1993) Particle mesh ewald: An n•log(n) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  54. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald potential. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  55. Raiter PD, Vidavsky Y, Silberstein MN (2021) Can polyelectrolyte mechanical properties be directly modulated by an electric field? A molecular dynamics study. Adv Funct Mater 31:2006969

    Article  CAS  Google Scholar 

  56. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The martini force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  57. Li C, Shen J, Pete C, der Vegt NFA (2012) A chemically accurate implicit-solvent coarse-grained model for polystyrenesulfonate solutions. Macromolecules 45:2551–2561

    Article  CAS  Google Scholar 

  58. Rawdon EJ, Kern JC, Piatek M, Plunkett P, Stasiak A, Millett KC (2008) Effect of knotting on the shape of polymers. Macromolecules 41:8281–8287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to the Molecular Simulation Center of Hunan Province (situated at Hunan University), which provides the commercial software (Materials Studio-4.0) to build the initial structural models and to perform the empirical calculations. The MD simulations were carried out at Shanxi Supercomputing Center (SXSC) in China.

Funding

This work is financially supported by the Natural Science Foundation of Hunan Province (2022JJ30311), and Double First-Class Discipline Construction Program of Hunan Province, and the Innovative Research Team in Higher Educational Institute of Hunan Province, and the Talent Support Plan of Hunan University of Humanities Science & Technology (HUHST).

Author information

Authors and Affiliations

Authors

Contributions

Wu C. is the only author who carried out all works underlying this manuscript.

Corresponding author

Correspondence to Chaofu Wu.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 667 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C. Multiscale modeling of thermomechanical properties of stereoregular polymers. J Mol Model 28, 214 (2022). https://doi.org/10.1007/s00894-022-05214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05214-8

Keywords

Navigation