Skip to main content
Log in

Aggregation behavior of partially contacted graphene sheets in six-carbon alkanes: all-atom molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are used to investigate the aggregation of the cross-contacted and non-cross-contacted graphene sheets in n-hexane, 2,3-dimethylbutane, and cyclohexane solvents. The results show that the main driving force of the graphene aggregation is the interaction between the graphene sheets, and the interaction between solvent molecules also contributes to the aggregation slightly. The initial graphene configurations and the solvent molecule structures both have effects on the graphene aggregation speed. Specifically, the cross-contacted graphene sheets aggregate faster than the non-cross-contacted configuration, since the interaction between the graphene sheets is larger and the direction of this interaction is conducive to pushing away the solvent molecules adsorbed on the graphene surface. The graphene aggregation speed is larger in n-hexane mainly since the mobility of the solvent molecules is higher than the other two solvents, while the interaction between graphenes/solvents has little influence for the systems used in this work. This work provides useful insights into the graphene aggregation in the solvents with different initial graphene configurations and solvent molecule structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data concerning the results of this study is shown in this manuscript, and raw material may be sent upon request.

Code availability

Not applicable.

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  2. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  CAS  Google Scholar 

  3. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666

    Article  CAS  Google Scholar 

  5. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  CAS  Google Scholar 

  6. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Correction: Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(46):5226–5226

    Article  CAS  Google Scholar 

  7. Yusuf M, Kumar M, Khan MA, Sillanpää M, Arafat H (2019) A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites. Adv Coll Interface Sci 273:102036

    Article  CAS  Google Scholar 

  8. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  9. Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20(21):6792–6797

    Article  CAS  Google Scholar 

  10. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    Article  CAS  Google Scholar 

  11. Konios D, Stylianakis MM, Stratakis E, Kymakis E (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112

    Article  CAS  Google Scholar 

  12. Danial WH, Norhisham NA, Ahmad Noorden AF, Abdul Majid Z, Matsumura K, Iqbal A (2021) A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Letters 31(3):371–388

    Article  Google Scholar 

  13. Xu Y, Cao H, Xue Y, Li B, Cai W (2018) Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials 8(11):942

    Article  Google Scholar 

  14. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  15. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  Google Scholar 

  16. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803

    Article  CAS  Google Scholar 

  17. Texter J (2014) Graphene dispersions. Curr Opin Colloid Interface Sci 19(2):163–174

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  19. Wei T, Luo G, Fan Z, Zheng C, Yan J, Yao C, Li W, Zhang C (2009) Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon 47(9):2296–2299

    Article  CAS  Google Scholar 

  20. de Oliveira TC, Ferreira FV, de Menezes BRC, da Silva DM, dos Santos AS, Kawachi EY, Simonetti EAN, Cividanes LS (2021) Engineering the surface of carbon-based nanomaterials for dispersion control in organic solvents or polymer matrices. Surf Interfaces 24:101121

    Article  Google Scholar 

  21. Yang J, Yang X, Li Y (2015) Molecular simulation perspective of liquid-phase exfoliation, dispersion, and stabilization for graphene. Curr Opin Colloid Interface Sci 20(5):339–345

    Article  CAS  Google Scholar 

  22. Shih C-J, Lin S, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648

    Article  CAS  Google Scholar 

  23. Jauja-Ccana VR, Cordova-Huaman AV, Feliciano GT, La Rosa-Toro Gómez A (2021) Experimental and molecular dynamics study of graphene oxide quantum dots interaction with solvents and its aggregation mechanism. J Mol Liq 335:116136

    Article  CAS  Google Scholar 

  24. Chen J, Dai F, Zhang L, Xu J, Liu W, Zeng S, Xu C, Chen L, Dai C (2020) Molecular insights into the dispersion stability of graphene oxide in mixed solvents: theoretical simulations and experimental verification. J Colloid Interface Sci 571:109–117

    Article  CAS  Google Scholar 

  25. Cui L, Wang H, Chen S, Zhang Y, Lv Z, Zhang J, Xiang Y, Lu S (2021) The interaction energy between solvent molecules and graphene as an effective descriptor for graphene dispersion in solvents. J Phys Chem C 125(9):5167–5171

    Article  CAS  Google Scholar 

  26. Ojaghlou N, Bratko D, Salanne M, Shafiei M, Luzar A (2020) Solvent–solvent correlations across graphene: the effect of image charges. ACS Nano 14(7):7987–7998

    Article  CAS  Google Scholar 

  27. Chen S, Sun S, Li C, Pittman CU, Lacy TE, Hu S, Gwaltney SR (2016) Behavior of protruding lateral plane graphene sheets in liquid dodecane: molecular dynamics simulations. J Nanopart Res 18(11):317

    Article  Google Scholar 

  28. Chen S, Sun S, Li C, Pittman CU, Lacy TE, Hu S, Gwaltney SR (2017) Molecular dynamics simulations of the graphene sheet aggregation in dodecane. J Nanopart Res 19(6):195

    Article  CAS  Google Scholar 

  29. Chen S, Sun S, Li C, Pittman CU, Lacy TE, Hu S, Gwaltney SR (2018) Molecular dynamics simulations of the aggregation behaviour of overlapped graphene sheets in linear aliphatic hydrocarbons. Mol Simul 44(12):947–953

    Article  CAS  Google Scholar 

  30. Benabdallah I, Kara A, Benaissa M (2020) Exfoliation and re-aggregation mechanisms of black phosphorus: a molecular dynamics study. Appl Surf Sci 507:144826

    Article  CAS  Google Scholar 

  31. Kumar S, Mishra T (2020) Shock wave induced exfoliation of molybdenum disulfide (MoS2) in various solvents: all-atom molecular dynamics simulation. J Mol Liq 314:113671

    Article  CAS  Google Scholar 

  32. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  33. Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15(7):752–768

    Article  CAS  Google Scholar 

  34. Yang S, Yu S, Cho M (2013) Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55:133–143

    Article  CAS  Google Scholar 

  35. Fan HB, Yuen MMF (2007) Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 48(7):2174–2178

    Article  CAS  Google Scholar 

  36. Jiang Q, Tallury SS, Qiu Y, Pasquinelli MA (2014) Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites. Carbon 67:440–448

    Article  CAS  Google Scholar 

  37. Kwon S, Lee MY, Yang S (2019) Molecular dynamics approach on the hygroelastic behavior of epoxy/graphene nanocomposites. J Mech Sci Technol 33(2):741–747

    Article  Google Scholar 

  38. Moshref-Javadi M, Simon GP, Medhekar NV (2018) Atomistic insights into the adsorption and stimuli-responsive behavior of poly(N-isopropylacrylamide)–graphene hybrid systems. Phys Chem Chem Phys 20(45):28592–28599

    Article  CAS  Google Scholar 

  39. Yang S, Kwon S, Lee MY, Cho M (2019) Molecular dynamics and micromechanics study of hygroelastic behavior in graphene oxide-epoxy nanocomposites. Compos B Eng 164:425–436

    Article  CAS  Google Scholar 

Download references

Funding

This research is sponsored by the National Natural Science Foundation of China (Grant No. 12104202). We acknowledge Projects ZR2019PA005 supported by Shandong Provincial Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S Chen: investigation, formal analysis, validation, writing (original draft). Q Li: methodology, writing (original draft), validation. D He: formal analysis, writing (review and editing). Y Liu: conceptualization, methodology, writing (review and editing). Li Wang: conceptualization, methodology. M Wang: computing resource, writing (review and editing).

Corresponding authors

Correspondence to Quanjiang Li or Meishan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, Q., He, D. et al. Aggregation behavior of partially contacted graphene sheets in six-carbon alkanes: all-atom molecular dynamics simulation. J Mol Model 28, 169 (2022). https://doi.org/10.1007/s00894-022-05164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05164-1

Keywords

Navigation