Skip to main content
Log in

Fundamental mechanisms of hexagonal boron nitride sensing of dopamine, tryptophan, ascorbic acid, and uric acid by first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 22 June 2022

This article has been updated

Abstract

Selectivity of dopamine (DA), uric acid (UA), and ascorbic acid (AA) is an open challenge of electrochemical sensors in the field of biosensing. In this study, two selective mechanisms for detecting DA, UA, and AA biomolecules on the pristine boron nitride nanosheets (BNNS) and functionalized BNNS with tryptophan (Trp), i.e., Trp@BNNS have been illustrated through density functional density (DFT) calculation and charge population analysis. Our findings reveal that the adsorbed biomolecules on Trp@BNNS indicate the less sensitivity factor of biomolecule separation than the functionalized biomolecules with Trp (Trp@biomolecule) adsorbed on pristine BNNS. From the calculations, strong adsorption of Trp@biomolecule on the pristine substrate corresponds to enhancing of electron charge transfer and electrical dipole moment. Our analysis is in good agreement with the previous theoretical and experimental results and suggests new pathway for electrode modification for electrochemical biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Hong R, Fischer NO, Verma A, Goodman CM, Emrick T, Rotello VM (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126:739–743

    Article  CAS  PubMed  Google Scholar 

  2. You C-C, Agasti SS, De M, Knapp MJ, Rotello VM (2006) Modulation of the catalytic behavior of alpha-chymotrypsin at monolayer-protected nanoparticle surfaces. J Am Chem Soc 128:14612–14618

    Article  CAS  PubMed  Google Scholar 

  3. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. PNAS 100:4984–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  CAS  PubMed  Google Scholar 

  5. Kang Y, Liu YC, Wang Q, Shen JW, Wu T, Guan WJ (2009) On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials 30:2807–2815

    Article  CAS  PubMed  Google Scholar 

  6. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A (2003) synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc 125:6160–6164

    Article  CAS  PubMed  Google Scholar 

  7. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–5

    Article  CAS  PubMed  Google Scholar 

  8. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  PubMed  Google Scholar 

  9. Mukhopadhyay S, Scheicher RH, Pandey R, Karna SP (2011) Applicability of carbon and boron nitride nanotubes as biosensors: sensitivity of boron nitride nanotubes toward biomolecules of different polarities. Phys Chem Lett 2:2442–2447

    Article  CAS  Google Scholar 

  10. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311:508–511

    Article  CAS  PubMed  Google Scholar 

  11. Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  CAS  Google Scholar 

  12. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335

    Article  CAS  PubMed  Google Scholar 

  13. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2009) Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4:8–10

    Article  CAS  Google Scholar 

  14. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 101:850–858

    Article  CAS  PubMed  Google Scholar 

  15. Lian Q, He Z, He Q, Luo A, Yan K, Zhang D, Lu X, Zhou X (2014) Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta 823:32–39

    Article  CAS  PubMed  Google Scholar 

  16. Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34:125–131

    Article  CAS  PubMed  Google Scholar 

  17. Wu L, Feng L, Ren J, Qu X (2012) Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron 34:57–62

    Article  PubMed  CAS  Google Scholar 

  18. Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples: a review. 2:305-320

  19. Moghimi N, Leung KT (2013) FePt Alloy Nanoparticles for biosensing: enhancement of vitamin C sensor performance and selectivity by nanoalloying. Anal Chem 85:5974–5980

    Article  CAS  PubMed  Google Scholar 

  20. Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90

    Article  PubMed  CAS  Google Scholar 

  21. Guo J, Ren LL, Wang RY, Zhang C, Yang Y, Liu TX (2011) Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. Compos Part B-Eng 42:2130–2135

    Article  CAS  Google Scholar 

  22. Angizi S, Ahmad Alem SA, Hasanzadeh Azar M, Shayeganfar F (2022) A comprehensive review on planar boron nitride nanomaterials: from 2D nanosheets towards 0D quantum dots. Prog Mater Sci 124:100884

    Article  CAS  Google Scholar 

  23. Zhao J, Chen Z (2015) Carbon-doped BN nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Phys Chem C 119(47):26348–26354

    Article  CAS  Google Scholar 

  24. Yunfan Q (2020) Understanding phenyloxenium ions: spectroscopic properties, spin configurations and reactivities. Ames, Iowa 

  25. Somorjai GA, Park JY (2008) Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem Soc Rev 37:2155–2162

    Article  CAS  PubMed  Google Scholar 

  26. Gupta S, Banaszak A (2021) Detection of DNA bases and environmentally relevant biomolecules and monitoring ssDNA hybridization by noble metal nanoparticles decorated graphene nanosheets as ultrasensitive G-SERS platforms. Raman spectroscopy 52(5):930–948

    Article  CAS  Google Scholar 

  27. Kresse G,  Hafner (1994) Ab initio molecular dynamics for liquid metals. J Phys Rev B 1993, 47 , 558; ibid. 49:14 251

  28. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J Comput Mat Sci 6:15

    Article  CAS  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(11):169

    Google Scholar 

  30. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  PubMed  Google Scholar 

  31. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmuller J (1996) J Phys Rev B 54:11169

  33. Blöchl PE (1994) Projector augmented-wave method. Phys Rev 50:17953

    Article  Google Scholar 

  34. Chettri B, Patra PK, Nguyen N, Hieu NN, Rai DP (2021) Hexagonal boron nitride (h-BN) nanosheet as a potential hydrogen adsorption material: a density functional theory (DFT) study. Surf Interfaces 24:101043

    Article  CAS  Google Scholar 

  35. Shayeganfar F, RahimiTabar MR, Simchi A, Beheshtian J (2017) Effects of functionalization and side defects on single-photon emission in boron nitride quantum dots. J Phys Rev 96:165307

    Article  Google Scholar 

  36. Bi Y-S, Liu B, Liu X-Y, Qin Y, Zou B-X (2020) A h-BCN for electrochemical sensor of dopamine and uric acid. J Nanomater 4604820

  37. Shayeganfar F, Rochefort A (2014) Electronic properties of self-assembled trimesic acid monolayer on graphene. Langmuir 30:9707–9716

    Article  CAS  PubMed  Google Scholar 

  38. Borlido P, Aull T, Huran AW, Tran F, Marques MAL, Botti S (2019) Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids. J Chem Theory Comput 15:5069–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cassabois G, Valvin P, Gil B (2016) Hexagonal boron nitride is an indirect band gap semiconductor. Nat Photon 10:262–266

    Article  CAS  Google Scholar 

  40. Elias C, Valvin P, Pelini T, Summerfield A, Mellor CJ, Cheng TS, Eaves L, Foxon CT, Beton PH, Novikov SV et al (2019) Direct band-gap crossover in epitaxial monolayer boron nitride. Nat Commun 10:2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao G, Mathkar A, Martins EP, Galvão DS, Gao D, Alves da Silva Autreto P, Sun C, Cai L, Ajayan PM (2014) Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition. J Mater Chem A 2:3148–3154

    Article  CAS  Google Scholar 

  42. Sharma V, Arora EK, Cardoza S (2016) Hydroxy-benzoic acid (4-diethylamino-2- hydroxy-benzylidene) hydrazide: DFT, antioxidant, spectroscopic and molecular docking studies with BSA. Luminescence 31:738–745

    Article  CAS  PubMed  Google Scholar 

  43. Govindarajan M, Karabacak M, Periandy S, Tanuja D (2012) Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO–LUMO, NBO analysis of organic 2,4,5-trichloroaniline. Spectrochimica Acta A 97:231–245

    Article  CAS  Google Scholar 

  44. Honorio KM, Dasilva ABF (2002) An AM1 study on the electron-donating and electron-accepting character of biomolecules. Quantum chemistry 95:126–132

    Article  CAS  Google Scholar 

  45. Henck H, Pierucci D, Fugallo G, Avila J, Cassabois G, Dappe YJ, Silly MG, Chen C, Gil B, Gatti M, Sottile F, Sirotti F, Asensio MC, Ouerghi A (2017) Direct observation of the band structure in bulk hexagonal boron nitride. Phys Rev B 95:085410

    Article  Google Scholar 

  46. Pierucci D, Zribi J, Henck H, Chaste J, Silly MG, Bertran F, Le Fevre P, Gil B, Summerfield A, Beton PH, Novikov SV, Cassabois G, Rault JE, Ouerghi AV, der, (2018) Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: electronic properties and band structure. Appl Phys Lett 112:253102

    Article  CAS  Google Scholar 

  47. Arenal R, St´ephan O, Kociak M, Taverna D, Loiseau A, Colliex C (2005) Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys Rev Lett 95:127601

    Article  CAS  PubMed  Google Scholar 

  48. Liu Z, Tizei LHG, Sato Y, Lin Y-C, Yeh C-H, Chiu P-W, Terauchi M, Iijima S, Suenaga K (2015) Postsynthesis of h-BN/graphene heterostructures inside a STEM. Small 12:252–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Feenstra RM (1994) Scanning tunneling spectroscopy. Surf Sci 299–300:965–979

    Article  Google Scholar 

  50. Feenstra RM (1994) Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. Phys Rev B 50:4561–4570

    Article  CAS  Google Scholar 

  51. Wong D, Velasco J, Ju L, Lee J, Kahn S, Tsai H-Z, Germany C, Taniguchi T, Watanabe K, Zettl A, Wang F, Crommie MF (2015) Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat Nanotechnol 10:949–953

    Article  CAS  PubMed  Google Scholar 

  52. Jin C, Lin F, Suenaga K, Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 102:195505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

E.R. and J.B. acknowledge the Shahid Rajaee University for computational resources.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and F.S. supervised the theoretical aspects of this work and E.R. performed computational models; E.R. and J.B. and F.S. and A.R. analyzed the data and F.S. wrote the manuscript.

Corresponding authors

Correspondence to Javad Beheshtian or Farzaneh Shayeganfar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a minor changes in the first author affiliation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezayei, E., Beheshtian, J., Shayeganfar, F. et al. Fundamental mechanisms of hexagonal boron nitride sensing of dopamine, tryptophan, ascorbic acid, and uric acid by first-principles study. J Mol Model 28, 158 (2022). https://doi.org/10.1007/s00894-022-05158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05158-z

Keywords

Navigation