Skip to main content
Log in

Unraveling the effects of interface orientation and crystallography on the deformation mechanisms of accumulative roll-bonded Cu-Nb–multilayered nanocomposites using molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work elucidates the effect of interface orientation, loading mode, and crystallography on the deformation mechanisms of Cu-Nb–multilayered nanocomposites. Molecular dynamics simulations of deformation behavior of accumulative roll-bonded Cu-Nb–multilayered nanocomposites (MNCs) were performed at room temperature conditions and at a constant strain rate under iso-stress and iso-strain conditions. Interface deformation mechanisms involving nucleation of partial dislocation at the interface and gliding in the Cu layer were observed under iso-stress and iso-strain conditions. Uniaxial stress–strain curves were analyzed for tension and compression under iso-stress and iso-strain loading conditions. The stress–strain plots were explored to understand the elastic, yield, and post-yielding behavior of Cu-Nb MNCs. Under compression with interface orientation normal to the loading direction, twin nucleated via gliding of partial dislocations. Under tension in the iso-stress case, only slip-assisted deformation was observed. Conversely, the deformation behavior under compression and tension was via slip and twinning, respectively, for iso-strain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yavas H, Fraile A, Huminiuc T, Sen HS, Frutos E, Polcar T (2019) Deformation-controlled design of metallic nanocomposites. ACS Appl Mater Interfaces 11:46296–46302. https://doi.org/10.1021/acsami.9b12235

    Article  CAS  PubMed  Google Scholar 

  2. Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100:136102. https://doi.org/10.1103/PhysRevLett.100.136102

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA (2013) Thermal stability of Cu–Nb nano lamellar composites fabricated via accumulative roll bonding. Philos Mag 93:718–735. https://doi.org/10.1080/14786435.2012.731527

    Article  CAS  Google Scholar 

  4. Gao Y, Yang T, Xue J, Yan S, Zhou S, Wang Y, Kwok DTK, Chu PK, Zhang Y (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413:11–15. https://doi.org/10.1016/j.jnucmat.2011.03.030

    Article  CAS  Google Scholar 

  5. Mara, Nathan Allan, Bhattacharyya, Dhriti, Dickerson, Pat, Hoagland, Richard, and Misra, Amit. Ultrahigh strength and ductility of metallic nanolayered composites. United States. https://www.osti.gov/servlets/purl/962321., (n.d.).

  6. Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5:1–19. https://doi.org/10.1080/21663831.2016.1225321

    Article  CAS  Google Scholar 

  7. Zhang RF, Germann TC, Liu X-Y, Wang J, Beyerlein IJ (2014) Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater 79:74–83. https://doi.org/10.1016/j.actamat.2014.07.016

    Article  CAS  Google Scholar 

  8. Li N, Wang J, Misra A, Huang JY (2012) Direct observations of confined layer slip in Cu/Nb multilayers. Microsc Microanal 18:1155–1162. https://doi.org/10.1017/S143192761200133X

    Article  CAS  PubMed  Google Scholar 

  9. Beyerlein IJ, Wang J, Zhang R (2013) Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater 61:7488–7499. https://doi.org/10.1016/j.actamat.2013.08.061

    Article  CAS  Google Scholar 

  10. Demkowicz MJ, Hoagland RG (2008) Structure of Kurdjumov-Sachs interfaces in simulations of a copper–niobium bilayer. J Nucl Mater 372:45–52. https://doi.org/10.1016/j.jnucmat.2007.02.001

    Article  CAS  Google Scholar 

  11. Petford-Long AK, Chiaramonti AN (2008) Transmission electron microscopy of multilayer thin films. Annu Rev Mater Res 38:559–584. https://doi.org/10.1146/annurev.matsci.38.060407.130326

    Article  CAS  Google Scholar 

  12. Nelasov IV, Lipnitskii AG (2016) The study of Cu/Nb interface diffusion using molecular dynamics simulation, St Petersburg Polytech. Univ J Phys Math 2:91–95. https://doi.org/10.1016/j.spjpm.2016.05.004

    Article  Google Scholar 

  13. Damadam M, Shao S, Salehinia I, Ayoub G, Zbib HM (2017) Molecular dynamics simulations of mechanical behavior in nanoscale ceramic-metallic multilayer composites. Mater Res Lett 5:306–313. https://doi.org/10.1080/21663831.2016.1275864

    Article  CAS  Google Scholar 

  14. An Q, Yang W, Liu B, Zheng S (2020) Interface effects on the properties of Cu–Nb nanolayered composites. J Mater Res 35:2684–2700. https://doi.org/10.1557/jmr.2020.283

    Article  CAS  Google Scholar 

  15. Rao SI, Hazzledine PM (2000) Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system. Philos Mag A 80:2011–2040. https://doi.org/10.1080/01418610008212148

    Article  CAS  Google Scholar 

  16. Lee S-B, LeDonne JE, Lim SCV, Beyerlein IJ, Rollett AD (2012) The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu–Nb multilayer composites. Acta Mater 60:1747–1761. https://doi.org/10.1016/j.actamat.2011.12.007

    Article  CAS  Google Scholar 

  17. Demkowicz MJ, Thilly L (2011) Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation. Acta Mater 59:7744–7756. https://doi.org/10.1016/j.actamat.2011.09.004

    Article  CAS  Google Scholar 

  18. Mara NA, Beyerlein IJ (2014) Review: Effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J Mater Sci 49:6497–6516. https://doi.org/10.1007/s10853-014-8342-9

    Article  CAS  Google Scholar 

  19. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824. https://doi.org/10.1016/j.actamat.2005.06.025

    Article  CAS  Google Scholar 

  20. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics, J Comp Phys, 117, 1–19 (n.d.).

  21. Stukowski A (2010) Modelling Simul. Mater. Sci. Eng. 18, 015012, (n.d.).

  22. Kang K, Wang J, Beyerlein IJ (2012) Atomic structure variations of mechanically stable fcc-bcc interfaces. J. Appl. Phys. 111, 1673., (n.d.).

  23. Kashinath A, Demkowicz MJ (2011) A predictive interatomic potential for He in Cu and Nb. Model Simul Mater Sci Eng 19(3):035007. https://doi.org/10.1088/0965-0393/19/3/035007

    Article  CAS  Google Scholar 

  24.  Demkowicz MJ, Hoagland RG (2008) Structure of Kurdjumov–Sachs interfaces in simulations of a copper–niobium bilayer. , 372(1),45–52. https://doi.org/10.1016/j.jnucmat.2007.02.001.

  25. Daw Murray S, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12)

  26. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19

    Article  CAS  Google Scholar 

  27. Pal-Val P, Pal-Val L, Natsik V, Davydenko A, Rybalko A (2015) Giant Young’s modulus variations in ultrafine-grained copper caused by texture changes at post-Spd heat treatment / Gigantyczne Zmiany Modułu Younga W Ultra Drobnoziarnistej Miedzi Spowodowane Przez Zmiany Tekstury W Trakcie Obróbki Cieplnej Po SPD. Arch Metall Mater 60:3073–3076. https://doi.org/10.1515/amm-2015-0491

    Article  CAS  Google Scholar 

  28. Rohith P, Sainath G, Choudhary BK (2018) Effect of orientation and mode of loading on deformation behaviour of Cu nanowires. Comput Condens Matter 17:e00330. https://doi.org/10.1016/j.cocom.2018

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the faculty startup support provided by the College of Engineering at the University of Nevada, Reno.

Author information

Authors and Affiliations

Authors

Contributions

Anugraha Thyagatur: methodology, investigation, and writing—original draft; Leslie T Mushongera: conceptualization, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Leslie T. Mushongera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyagatur, A., Mushongera, L.T. Unraveling the effects of interface orientation and crystallography on the deformation mechanisms of accumulative roll-bonded Cu-Nb–multilayered nanocomposites using molecular dynamics. J Mol Model 28, 166 (2022). https://doi.org/10.1007/s00894-022-05155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05155-2

Keywords

Navigation