Skip to main content
Log in

Simultaneous catalytic oxidation of elemental mercury and arsine over CeO2(111) surface: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract 

Ceria (CeO2)–based materials are potential catalysts for the removal of the Hg0 and AsH3 present in reducing atmospheres. However, theoretical studies investigating the Hg0 and AsH3 removal capacity of ceria remain limited. In this study, the adsorption behavior and mechanistic pathways for the catalytic oxidation of Hg0 and AsH3 on the CeO2(111) surface, including the calculation of optimized adsorption configurations and energies, were investigated using density functional theory calculations. The results suggest that Hg0 and AsH3 are favorably adsorbed on the CeO2(111) surface, whereas CO is not, which is crucial for selective removal when CO is a desirable gas component. Furthermore, AsH3 is adsorbed more favorably than Hg0. In addition, the calculations revealed that the Hg atom is initially adsorbed on the surface and then oxidized by lattice oxygen to form HgO. Concerning AsH3 decomposition, the stepwise dehydrogenation of AsH3 followed by bonding with lattice O atoms to form the As-O bond seems the most plausible. Finally, the adsorbed As-O bond is further forms elemental As and As2O3. Therefore, CeO2 can adsorb and remove Hg0 and AsH3, making it a promising catalyst for the simultaneous catalytic oxidation of Hg0 and AsH3 in strongly reducing off-gas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang XQ, Ning P, Chen W (2011) Studies on purification of yellow phosphorus off-gas by combined washing, catalytic oxidation, and desulphurization at a pilot scale. Sep Purif Technol 80:519–525

    Article  CAS  Google Scholar 

  2. Furue R, Koveke EP, Sugimoto S, Shudo Y, Hayami S, Ohira SI, Toda K (2017) Arsine gas sensor based on gold-modified reduced graphene oxide. Sensor Actuat B Chem 240:657–663

    Article  CAS  Google Scholar 

  3. Huang X, Li M, Friedli HR, Song Y, Chang D, Zhu L (2011) Mercury emissions from biomass burning in China. Environ Sci Technol 45:9442–9448

    Article  CAS  Google Scholar 

  4. Mestrot A, Merle JK, Broglia A (2011) Atmospheric stability of arsine and methylarsines. Environ Sci Technol 45:4010–4015

    Article  CAS  Google Scholar 

  5. Zhang YJ, Ning P, Wang XQ, Wang LL, Xie YB, Ma Q, Cao R, Zhang H (2019) Simultaneous removal of elemental mercury and arsine from a reducing atmosphere using chloride and cerium modified activated carbon. Ind Eng Chem Res 58:23529–23539

    Article  CAS  Google Scholar 

  6. Mendiara T, Izquierdo MT, Abad A, Gayan P, Garcia-Labiano F, Diego L, Adanez J (2014) Mercury release and speciation in chemical looping combustion of coal, Energ. Fuel 28:2786–2794

    Article  CAS  Google Scholar 

  7. Ochoagonzález R, Córdoba P, Díazsomoano M, Font O, Lópezantón MA, Leiva C, Martíneztarazona MR, Querol X, Pereira CF, Tomás A (2011) Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants. Chemosphere 85:565–570

    Article  Google Scholar 

  8. Zhao S, Duan Y, Yao T, Liu M, Lu J, Tan H, Wang X, Wu L (2017) Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant. Fuel 199:653–661

    Article  CAS  Google Scholar 

  9. Zhou Z, Liu X, Liao Z, Shao H, Hu Y, Xu Y, Xu M (2016) A novel low temperature catalyst regenerated from deactivated SCR catalyst for Hg0 oxidation. Chem Eng J 304:121–128

    Article  CAS  Google Scholar 

  10. L. Zhang, S. Wang, Q. Wu, F. Wang, C.J. Lin, L. Zhang, M. Hui, M. Yang, H. Su, J. Hao, Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review, Atmos. Chem. Phys., 16 (2016).

  11. Wang XQ, Ning P, Shi Y, Jiang M (2009) Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon. J Hazard Mater 171:588–593

    Article  CAS  Google Scholar 

  12. Jung JE, Geatches D, Lee K, Aboud S, Brown GE, Wilcox J (2015) First-principles investigation of mercury adsorption on the α-Fe2O3(1102) surface. J Phys Chem C 119:26512–26518

    Article  CAS  Google Scholar 

  13. Hrdlicka JA, Seames WS, Mann MD, Muggli DS, Horabik CA (2008) Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters. Environ Sci Technol 42:6677–6682

    Article  CAS  Google Scholar 

  14. Chen MY, Tsai YC, Tseng CF, Lin HP, Hsi HC (2019) Using rice-husk-derived porous silica modified with recycled Cu from industrial wastewater and Ce to remove Hg0 and NO from simulated flue gases, aerosol air qual. Res 19:2557–2567

    CAS  Google Scholar 

  15. Presto AA, Granite EJ (2008) Noble metal catalysts for mercury oxidation in utility flue gas, platin. Met Rev 52:144–154

    CAS  Google Scholar 

  16. Kunaseth M, Mudchimo T, Namuangruk S, Kungwan N, Promarak V, Jungsuttiwong S (2016) A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size. Appl Surf Sci 367:552–558

    Article  CAS  Google Scholar 

  17. J.E. Granite, H.W. Pennline, Catalysts for oxidation of mercury in flue gas, U.S. Patent 7,776,780 B1, 2010.

  18. Yan NQ, Chen WM, Chen J, Qu Z, Guo YF (2011) Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ Sci Technol 45:5725–5730

    Article  CAS  Google Scholar 

  19. Siddiqui SA, Bouarissa N (2013) First principle study of the interaction of elemental Hg with small neutral, anionic and cationic Pdn (n = 1–6) clusters. J Chem Phys 125:1629–1637

    CAS  Google Scholar 

  20. Meeprasert J, Junkaew A, Rungnim C, Kunaseth M, Kungwan N, Promarak V, Namuangruk S (2016) Capability of defective graphene-supported Pd 13 and Ag 13 particles for mercury adsorption. Appl Surf Sci 364:166–175

    Article  CAS  Google Scholar 

  21. Xu WQ, Tong L, Qi H, Zhou X, Wang J, Zhu T (2015) Effect of flue gas components on Hg0 oxidationover Fe/HZSM-5 catalyst. Ind Eng Chem Res 54:146–152

    Article  CAS  Google Scholar 

  22. Wang P, Su S, Xiang J, Cao F, Sun L, Hu S, Lei S (2013) Catalytic oxidation of Hg0 by CuO–MnO2–Fe2O3/γ-Al2O3 catalyst. Chem Eng J 225:68–75

    Article  CAS  Google Scholar 

  23. Gao W, Liu QC, Wu CY, Li HL, Li Y, Yang J, Wu GF (2013) Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst. Chem Eng J 220:53–60

    Article  CAS  Google Scholar 

  24. Lin YL, Wang XQ, Hao JM, Ning P, Qu GF, Ma YX, Wang LL (2017) Improved arsine removal efficiency over MnOx supported molecular sieves catalysts via micro-oxygen oxidation, Energ. Fuel 31:9752–9759

    Article  CAS  Google Scholar 

  25. Li HL, Wu CY, Li Y, Zhang JY (2011) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400

    Article  CAS  Google Scholar 

  26. Phuong TMP, Thang LM, Tien TN, Isabel VD (2014) CeO2 Based catalysts for the treatment of propylene in motorcycle’s exhaust gases. Materials 7:7379–7397

    Article  Google Scholar 

  27. Fan XP, Li CT, Zeng GM, Zhang X, Tao SS, Lu P, Tan Y, Luo DQ (2012) Hg0 Removal from Simulated Flue Gas over CeO2/HZSM-5, Energ. Fuel 26:2082–2089

    Article  CAS  Google Scholar 

  28. Xie YB, Wang LL, Ning P, Wang XQ, Wang Q, Zhang YJ, Wang MY (2019) Superior activity of Ce-HZSM-5 catalyst for catalytic oxidation of arsine at low oxygen. Appl Organomet Chem 33:e4745

    Article  Google Scholar 

  29. Zhao L, He QS, Li L, Lu Q, Dong CQ, Yang YP (2015) Research on the catalytic oxidation of Hg0 by modified SCR catalysts. J Fuel Chem Technol 43:628–634

    Article  Google Scholar 

  30. B. Delley, From molecules to solids with the (Equation presented) approach, J. Chem. Phys., 113 (2000).

  31. Delly B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1998) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  33. Perdew JP, Burke K, Yue W (1997) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys rev B 54:16533–16539

    Article  Google Scholar 

  34. Payne MC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097

    Article  CAS  Google Scholar 

  35. He P, Wu J, Jiang X, Pan W, Ren J (2012) Effect of SO3 on elemental mercury adsorption on a carbonaceous surface. Appl Surf Sci 258:8853–8860

    Article  CAS  Google Scholar 

  36. He P, Zhang X, Peng X, Jiang X, Wu J, Chen N (2015) Interaction of elemental mercury with defective carbonaceous cluster. J Hazard Mater 300:289–297

    Article  CAS  Google Scholar 

  37. Z. Gao, G. Yan, M. Zhao, S. Xu, X. Ding, Theoretical insights into the stability of perovskite clusters by studying water adsorption on (CH3NH3)4SnI6, Sol. Energ. Mat. Sol. C., 202 (2019) 110126-.

  38. Li Z, Wu Y, Han J, Lu Q, Yang Y, Zhang L (2018) Mechanism of Mercury Adsorption and Oxidation by Oxygen over the CeO2 (111) Surface: A DFT Study. Materials 11:485

    Article  Google Scholar 

  39. Li H, Liu S, Yang J, Liu Y, Hu Y, Feng S, Yang Z, Zhao J, Qu W (2020) Role of SO2 and H2O in the mercury adsorption on ceria surface: A DFT study. Fuel 260:116289

    Article  CAS  Google Scholar 

  40. W. Li, S.G. Srinivasan, D.R. Salahub, T. Heine, Ni on the CeO2(110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies, Phys. chem. chem. phys., 18 (2016) 11139–11149.

  41. Wang H, Wang S, Duan Y, Li YN, Ying Z (2019) Experimental study of homogeneous Hg oxidation in air and Oxy-simulated flue gas. J Energy Inst 92:257–264

    Article  CAS  Google Scholar 

  42. Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Materials Studio software was supported by the National Supercomputing Center in Shenzhen. The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of the DFT calculation.

Funding

This work was financially supported by the Basic Research Project of Yunnan Province Science and Technology Department (grant number: 202201AU070004), the National Natural Science Foundation of China (grant number: 51868030, 52070090), the Science and Technology Planning Project of Yunnan Province (grant number: 202001AU070031), and the National Key Research and Development Program of China (grant number: 2018YFC0213400, 2017YFC210500).

Author information

Authors and Affiliations

Authors

Contributions

Yingjie Zhang: methodology, writing—original draft preparation, investigation; Huijuan Yu: writing—reviewing and editing; Xueqian Wang: conceptualization, funding acquisition; Langlang Wang: writing—reviewing and editing; Yuancheng Li: investigation, funding acquisition; Dongpeng Lv: data curation; Dan Zhu: validation; Chunmei Tian: writing—reviewing and editing.

Corresponding author

Correspondence to Xueqian Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yu, H., Wang, X. et al. Simultaneous catalytic oxidation of elemental mercury and arsine over CeO2(111) surface: a density functional theory study. J Mol Model 28, 156 (2022). https://doi.org/10.1007/s00894-022-05153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05153-4

Keywords

Navigation