Skip to main content
Log in

Virtual screening of PEBP1 inhibitors by combining 2D/3D-QSAR analysis, hologram QSAR, homology modeling, molecular docking analysis, and molecular dynamic simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human phosphatidylethanolamine binding protein 1 (hPEBP1) is a novel target affecting many cellular signaling pathways involved in the formation of metastases. It can be used in the treatment of many cases of cancer. For these reasons, pharmaceutical companies use computational approaches, including multi-QSAR (2D, 3D, and hologram QSAR) analysis, homology modeling, molecular docking analysis, and molecular dynamic simulations, to speed up the drug discovery process. In this paper, QSAR modeling was conducted using two quantum chemistry optimization methods (AM1 and DFT levels). As per PLS results, we found that the DFT/B3LYP method presents high predictability according to 2D-QSAR, CoMFA, CoMSIA, and hologram QSAR studies, with Q2 of 0.81, 0.67, 0.79, and 0.67, and external power with R2pred of 0.78, 0.58, 0.66, and 0.56, respectively. This result has been validated by CoMFA/CoMSIA graphics, which suggests that electrostatic fields combined with hydrogen bond donor/acceptor fields are beneficial to the antiproliferative activity. While the hologram QSAR models show the contributions of each fragment in improving the activity. The results from QSAR analyses revealed that ursolic acids with heterocyclic rings could improve the activities. Ramachandran plot validated the modeled PEBP1 protein. Molecular docking and MD simulations revealed that the hydrophobic and hydrogen bond interactions are dominant in the PEBP1’s pocket. These results were used to predict in silico structures of three new compounds with potential anticancer activity. Similar molecular docking stability studies and molecular dynamics simulations were conducted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data is integrated into the manuscript.

Code availability

Not applicable.

Abbreviations

hPEBP1:

Human phosphatidylethanolamine binding protein 1

QSARs:

Quantitative structure–activity relationships

2D:

Two dimensional

3D:

Three dimensional

DFT:

Density functional theory

AM1:

Austin model 1

MDs:

Molecular dynamics

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity indices analysis

HQSAR:

Hologram quantitative structure–activity relationships

GMQE score:

Global Model Quality Estimation

OECD:

Organization for Economic Co-operation and Development

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Schoentgen F, Jonic S (2018) PEBP1/RKIP: from multiple functions to a common role in cellular processes. arXiv preprint arXiv:1802.02378

  3. Beshir AB, Ren G, Magpusao AN et al (2010) Raf kinase inhibitor protein suppresses nuclear factor-κB-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression. Cancer Lett 299:137–149. https://doi.org/10.1016/j.canlet.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Mulla F, Bitar MS, Al-Maghrebi M et al (2011) Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3β. Cancer Res 71:1334–1343. https://doi.org/10.1158/0008-5472.CAN-10-3102

    Article  CAS  PubMed  Google Scholar 

  5. Rath O, Park S, Tang H et al (2008) The RKIP (Raf-1 kinase inhibitor protein) conserved pocket binds to the phosphorylated N-region of Raf-1 and inhibits the Raf-1-mediated activated phosphorylation of MEK. Cell Signal 20:935–941. https://doi.org/10.1016/j.cellsig.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  6. Yan X-F, Xiao H-M, Gong X-D, Ju X-H (2006) A comparison of semiempirical and first principle methods for establishing toxicological QSARs of nitroaromatics. J Mol Struct (Thoechem) 764:141–148. https://doi.org/10.1016/j.theochem.2006.02.018

    Article  CAS  Google Scholar 

  7. Puzyn T, Leszczynski J, Cronin MTD (2010) Recent advances in QSAR studies: methods and applications. Challenges and advances in computational chemistry and physics. Springer, Dordrecht, New York

    Book  Google Scholar 

  8. Cronin MTD, Livingstone D (2004) Predicting chemical toxicity and fate. CRC Press

    Book  Google Scholar 

  9. Kubinyi H (1998) Comparative Molecular Field Analysis (CoMFA). Encyclopedia Comput Chem 1:448–460

    Google Scholar 

  10. Ghemtio L, Zhang Y, Xhaard H (2012) CoMFA/CoMSIA and pharmacophore modeling as a powerful tools for efficient virtual screening: application to anti-leishmanial betulin derivatives. In: Virtual Screening, 55–82

  11. Lowis DR (1997) HQSAR: a new, highly predictive QSAR technique. Tripos Tech Notes 1:17

    Google Scholar 

  12. Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93:12–20. https://doi.org/10.1111/cbdd.13388

    Article  CAS  PubMed  Google Scholar 

  13. Safarizadeh H, Garkani-Nejad Z (2019) Molecular docking, molecular dynamics simulations and QSAR studies on some of 2-arylethenylquinoline derivatives for inhibition of Alzheimer’s amyloid-beta aggregation: insight into mechanism of interactions and parameters for design of new inhibitors. J Mol Graph Model 87:129–143. https://doi.org/10.1016/j.jmgm.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  14. Muneeswaran G, Pandiaraj M, Kartheeswaran S et al (2018) Molecular dynamics simulation approach to explore atomistic molecular mechanism of peroxidase activity of apoptotic cytochrome c mutants. Informatics Med Unlocked 11:51–60. https://doi.org/10.1016/j.imu.2018.04.003

    Article  Google Scholar 

  15. Woźniak Ł, Skąpska S, Marszałek K (2015) Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 20:20614–20641. https://doi.org/10.3390/molecules201119721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mourya A, Akhtar A, Ahuja S et al (2018) Synergistic action of ursolic acid and metformin in experimental model of insulin resistance and related behavioral alterations. Eur J Pharmacol 835:31–40. https://doi.org/10.1016/j.ejphar.2018.07.056

    Article  CAS  PubMed  Google Scholar 

  17. López-Hortas L, Pérez-Larrán P, González-Muñoz MJ et al (2018) Recent developments on the extraction and application of ursolic acid. A review. Food Res Int 103:130–149. https://doi.org/10.1016/j.foodres.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  18. Hua S-X, Huang R-Z, Ye M-Y et al (2015) Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents. Eur J Med Chem 95:435–452. https://doi.org/10.1016/j.ejmech.2015.03.051

    Article  CAS  PubMed  Google Scholar 

  19. Tang Q, Liu Y, Li T et al (2016) A novel co-drug of aspirin and ursolic acid interrupts adhesion, invasion and migration of cancer cells to vascular endothelium via regulating EMT and EGFR-mediated signaling pathways: multiple targets for cancer metastasis prevention and treatment. Oncotarget 7. https://doi.org/10.18632/oncotarget.12232

  20. Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO (2019) Ursolic acid and its derivatives as bioactive agents. Molecules 24:2751. https://doi.org/10.3390/molecules24152751

    Article  PubMed Central  Google Scholar 

  21. Qian Z, Wang X, Song Z et al (2015) A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. Biomed Res Int 2015:1–7. https://doi.org/10.1155/2015/809714

    Article  CAS  Google Scholar 

  22. Sultana N (2011) Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 26:616–642. https://doi.org/10.3109/14756366.2010.546793

    Article  CAS  PubMed  Google Scholar 

  23. Iqbal J, Abbasi BA, Ahmad R et al (2018) Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomed Pharmacother 108:752–756. https://doi.org/10.1016/j.biopha.2018.09.096

    Article  CAS  PubMed  Google Scholar 

  24. Leal AS, Wang R, Salvador JAR, Jing Y (2012) Synthesis of novel ursolic acid heterocyclic derivatives with improved abilities of antiproliferation and induction of p53, p21waf1 and NOXA in pancreatic cancer cells. Bioorg Med Chem 20:5774–5786. https://doi.org/10.1016/j.bmc.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  25. Gaussian 09 (2009) R.A.: 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc Wallingford CT. 121, 150

  26. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  27. Lazrak M, Toufik H, Bouzzine SM et al (2018) The computational study of bridge effect in D-π-A photosensitive dyes, based on triphenylamine. IOP Conf Ser Earth Environ Sci 161:012021. https://doi.org/10.1088/1755-1315/161/1/012021

    Article  Google Scholar 

  28. Lazrak M, Toufik H, Bouzzine SM, Lamchouri F (2020) Bridge effect on the charge transfer and optoelectronic properties of triphenylamine-based organic dye sensitized solar cells: theoretical approach. Res Chem Intermed 46:3961–3978. https://doi.org/10.1007/s11164-020-04184-x

    Article  CAS  Google Scholar 

  29. Casida ME (1995) Time-dependent density functional response theory for molecules. In: Recent Advances in Computational Chemistry. WORLD SCIENTIFIC 155–192. https://doi.org/10.1142/9789812830586_0005

  30. Ennehary S, Toufik H, Bouzzine SM, Lamchouri F (2020) Effect of the alkyl chain length on the optoelectronic properties of organic dyes: theoretical approach. J Comput Electron 19:840–848. https://doi.org/10.1007/s10825-020-01486-6

    Article  CAS  Google Scholar 

  31. Gramatica P, Chirico N, Papa E et al (2013) QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132. https://doi.org/10.1002/jcc.23361

    Article  CAS  Google Scholar 

  32. Stitou M, Toufik H, Akabli T et al (2018) 2D-QSAR method of lupane-type saponins the treatement of cancer cell line. RHAZES: Green Appl Chem 2:33–45

    CAS  Google Scholar 

  33. Akabli T, Toufik H, Yasri A et al (2018) Combining ligand-based and structure-based drug design approaches to study the structure-activity relationships of a β-carboline derivative series. Struct Chem 29:1637–1645. https://doi.org/10.1007/s11224-018-1141-1

    Article  CAS  Google Scholar 

  34. O’brien RM, (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. https://doi.org/10.1007/s11135-006-9018-6

    Article  Google Scholar 

  35. Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers. 231-243. https://doi.org/10.1023/A:1021372108686

  36. ReenuVikas, (2016) Evaluating the role of electron-correlation in the external prediction of the toxicity of nitrobenzenes towards Tetrahymena pyriformis. New J Chem 40:2343–2353. https://doi.org/10.1039/C5NJ02552D

    Article  CAS  Google Scholar 

  37. Stitou M, Toufik H, Bouachrine M et al (2019) Machine learning algorithms used in quantitative structure-activity relationships studies as new approaches in drug discovery. In: 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), IEEE, Taza, Morocco, 1–8. https://doi.org/10.1109/ISACS48493.2019.9068917

  38. Rücker C, Rücker G, Meringer M (2007) y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357. https://doi.org/10.1021/ci700157b

    Article  CAS  PubMed  Google Scholar 

  39. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29. https://doi.org/10.1016/j.chemolab.2015.04.013

    Article  CAS  Google Scholar 

  40. Pourbasheer E, Aalizadeh R, Shokouhi Tabar S et al (2014) 2D and 3D quantitative structure–activity relationship study of hepatitis C virus NS5B polymerase inhibitors by comparative molecular field analysis and comparative molecular similarity indices analysis methods. J Chem Inf Model 54:2902–2914. https://doi.org/10.1021/ci500216c

    Article  CAS  PubMed  Google Scholar 

  41. Hadni H, Elhallaoui M (2020) 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents. New J Chem 44:6553–6565. https://doi.org/10.1039/C9NJ05767F

    Article  CAS  Google Scholar 

  42. Halim SA, Zaheer-ul-Haq, (2015) Structure based 3D-QSAR studies of interleukin-2 inhibitors: comparing the quality and predictivity of 3D-QSAR models obtained from different alignment methods and charge calculations. Chem Biol Interact 238:9–24. https://doi.org/10.1016/j.cbi.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  43. SYBYL/QSAR. Molecular Modelling Software, Tripos Inc., 1699 S. Hanley Road, St. Louis, MO 63944, USA

  44. Stitou M, Toufik H, Bouachrine M, Lamchouri F (2020) Quantitative structure–activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. J Biomol Struct Dyn 39:152–170. https://doi.org/10.1080/07391102.2019.1707122

    Article  CAS  PubMed  Google Scholar 

  45. Matysiak J, Niewiadomy A (2017) QSAR models of antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazoles in various cancer cell lines. Mol Divers 21:211–218. https://doi.org/10.1007/s11030-016-9705-8

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Yan J, Wang M et al (2018) Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1,3,4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri. Mol Divers 22:791–802. https://doi.org/10.1007/s11030-018-9837-0

    Article  CAS  PubMed  Google Scholar 

  47. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  48. Ye W-L, Zhang L-X, Guan Y-D et al (2019) Virtual screening and experimental validation of eEF2K inhibitors by combining homology modeling, QSAR and molecular docking from FDA approved drugs. New J Chem 43:19097–19106. https://doi.org/10.1039/C9NJ02600B

    Article  CAS  Google Scholar 

  49. Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: A comprehensive scoring function for model quality assessment. Proteins Struct Funct Bioinformatics 71:261–277. https://doi.org/10.1002/prot.21715

    Article  CAS  Google Scholar 

  50. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  51. Vanommeslaeghe K, Hatcher E, Acharya C et al (2009) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem NA-NA. https://doi.org/10.1002/jcc.21367

    Article  Google Scholar 

  52. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jorgensen WL, Tirado-Rives J The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666. https://doi.org/10.1021/ja00214a001

  54. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  55. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  56. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  57. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  58. Walton IM, Cox JM, Benson CA et al (2016) The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J Chem 40:101–106. https://doi.org/10.1039/C5NJ01718A

    Article  CAS  Google Scholar 

  59. Frimand K, Jalkanen KJ (2002) SCC-TB, DFT/B3LYP, MP2, AM1, PM3 and RHF study of ethylene oxide and propylene oxide structures, VA and VCD spectra. Chem Phys 279:161–178. https://doi.org/10.1016/S0301-0104(02)00457-3

    Article  CAS  Google Scholar 

  60. Pasha FA, Srivastava HK, Singh PP (2005) Comparative QSAR study of phenol derivatives with the help of density functional theory. Bioorg Med Chem 13:6823–6829. https://doi.org/10.1016/j.bmc.2005.07.064

    Article  CAS  PubMed  Google Scholar 

  61. Deeb O, Clare BW (2008) Comparison of AM1 and B3LYP-DFT for inhibition of MAO-A by phenylisopropylamines: a QSAR study. Chem Biol Drug Design 71:352–362. https://doi.org/10.1111/j.1747-0285.2008.00643.x

    Article  CAS  Google Scholar 

  62. Myint KZ, Xie X-Q (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. IJMS 11:3846–3866. https://doi.org/10.3390/ijms11103846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rost B, Sander C (1996) Bridging the protein sequence-structure gap by structure predictions. Annu Rev Biophys Biomol Struct 25:113–136

    Article  CAS  Google Scholar 

  64. Weiner PK, Langridge R, Blaney JM et al (1982) Electrostatic potential molecular surfaces. Proc Natl Acad Sci 79:3754–3758. https://doi.org/10.1073/pnas.79.12.3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rathi PC, Ludlow RF, Verdonk ML (2019) Practical high-quality electrostatic potential surfaces for drug discovery using a graph-convolutional deep neural network. J Med Chem 63:8778–8790. https://doi.org/10.1021/acs.jmedchem.9b01129

    Article  CAS  PubMed  Google Scholar 

  66. Monajjemil M, Oliaey AR (2009) Gyration radius and energy study at different temperatures for acetylcholine receptor protein in gas phase by Monte Carlo, molecular and Langevin dynamics simulations. J Phys Theor Chem Islamic Azad Univ Iran 5:195–201

    Google Scholar 

Download references

Funding

This work was supported by the National Center for Scientific and Technical Research (CNRST — Morocco) as part of the Research Excellence Awards Program (no. 34USMBA2017).

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript.

Corresponding author

Correspondence to Hamid Toufik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8680 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stitou, M., Toufik, H., Akabli, T. et al. Virtual screening of PEBP1 inhibitors by combining 2D/3D-QSAR analysis, hologram QSAR, homology modeling, molecular docking analysis, and molecular dynamic simulations. J Mol Model 28, 145 (2022). https://doi.org/10.1007/s00894-022-05143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05143-6

Keywords

Navigation