Skip to main content
Log in

Cephalexin degradation initiated by OH radicals: theoretical prediction of the mechanisms and the toxicity of byproducts

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the density functional theory is used to study the local reactivity of cephalexin (CLX) to radical attack and explain the mechanism of the reaction between CLX and hydroxyl radical attack leading to degradation byproducts. The reaction between •OH and CLX is supposed to lead to either an addition of a hydroxyl radical or an abstraction of a hydrogen. The results showed that the affinity of cephalexin for addition reactions increases as it passes from the gas to the aqueous phase and decreases as it passes from the neutral to the ionized form. Thermodynamic data confirmed that OH addition radicals (Radd) are thermodynamically favored over H abstraction radicals (Rabs). The ecotoxicity assessments of CLX and its byproducts are estimated from the acute toxicities toward green algae, Daphnia, and fish. The formation of byproducts is safe for aquatic organisms, and only one byproduct is harmful to Daphnia.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Gaussian 16 program package: G16W Full Version, 32-Bit, Rev: A.03 Front: 1.1. Version: Multiprocessor. GaussView6 for Windows, Rev: 6.0.16, 32-bit. V32108462166828W-4627 N. ECOSAR Class Program (Free Ware).

References

  1. Bailey A, Walker A, Hadley DG (1971) James, Cephalexin. A new oral antibiotic, Torax 20:15–19

    CAS  Google Scholar 

  2. He J, Zhang Y, Guo Y, Rhodes G, Yeom J, Li H, Zhang W (2019) Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: kinetics, influencing factors, and mechanisms. Environ Int 132:105105. https://doi.org/10.1016/j.envint.2019.105105

    Article  CAS  PubMed  Google Scholar 

  3. Estrada AL, Li Y-Y, Wang A (2012) Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J Hazard Mater 227:41–48. https://doi.org/10.1016/j.jhazmat.2012.04.079

    Article  CAS  PubMed  Google Scholar 

  4. Benarab N and Fangninou FF (2020) The issues of Antibiotics: Cephalexin Antibiotic as emerging environment contaminant. Int J Sci Res Publ 10:306–318. https://doi.org/10.29322/IJSRP.10.02.2020.p9843

  5. Ikehata K, JodeiriNaghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone Sci. Eng. 28:353–414. https://doi.org/10.1080/01919510600985937

    Article  CAS  Google Scholar 

  6. Mandal T, Maity S, Dasgupta D, Datta S (2010) Advanced oxidation process and biotreatment: their roles in combined industrial wastewater treatment. Desalination 250:87–94. https://doi.org/10.1016/j.desal.2009.04.012

    Article  CAS  Google Scholar 

  7. Stefan MI (2017) Advanced oxidation processes for water treatment: fundamentals and applications. IWA publishing. https://doi.org/10.2166/9781780407197_0297

    Article  Google Scholar 

  8. Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manage 219:189–207. https://doi.org/10.1016/j.jenvman.2018.04.103

    Article  CAS  PubMed  Google Scholar 

  9. Cao J, Ren Q, Chen F, Lu T (2015) Comparative study on the methods for predicting the reactive site of nucleophilic reaction. Sci China Chem 58:1845–1852. https://doi.org/10.1007/s11426-015-5494-7

    Article  Google Scholar 

  10. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  11. Droguett C, Salazar R, Brillas E, Sirés I, Carlesi C, Marco JF, Thiam A (2020) Treatment of antibiotic cephalexin by heterogeneous electrochemical Fenton-based processes using chalcopyrite as sustainable catalyst. Sci Total Environ 740:140154. https://doi.org/10.1016/j.scitotenv.2020.140154

    Article  CAS  PubMed  Google Scholar 

  12. Bansal P, Verma A (2018) N, Ag co-doped TiO2 mediated modified in-situ dual process (modified photocatalysis and photo-Fenton) in fixed-mode for the degradation of cephalexin under solar irradiations. Chemosphere 212:611–619. https://doi.org/10.1016/j.chemosphere.2018.08.120

    Article  CAS  PubMed  Google Scholar 

  13. Wu H, Feng Q, Yang H, Alam E, Gao B, Gu D (2017) Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: characterization, kinetics and mechanisms. Colloids Surfaces A Physicochem Eng Asp 517:63–71. https://doi.org/10.1016/j.colsurfa.2017.01.005

    Article  CAS  Google Scholar 

  14. Perea LA, Palma-Goyes RE, Vazquez-Arenas J, Romero-Ibarra I, Ostos C, Torres-Palma RA (2019) Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: role of bath composition, analysis of degradation pathways and degradation extent. Sci Total Environ 648:377–387. https://doi.org/10.1016/j.scitotenv.2018.08.148

    Article  CAS  PubMed  Google Scholar 

  15. Coledam DAC, Pupo MMS, Silva BF, Silva AJ, Eguiluz KIB, Salazar-Banda GR, Aquino JM (2017) Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation. Chemosphere 168:638–647

    Article  CAS  Google Scholar 

  16. Antonin VS, Aquino JM, Silva BF, Silva AJ, Rocha-Filho RC (2019) Comparative study on the degradation of cephalexin by four electrochemical advanced oxidation processes: evolution of oxidation intermediates and antimicrobial activity. Chem Eng J 372:1104–1112. https://doi.org/10.1016/j.cej.2019.04.185

    Article  CAS  Google Scholar 

  17. Guo W, Wang H, Shi Y, Zhang G (2010) Sonochemical degradation of the antibiotic cephalexin in aqueous solution, Water Sa. 36. https://doi.org/10.4314/wsav36i5.61998

  18. Alalm MG, Tawfik A, Ookawara S (2015) Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng 3:46–51

    Article  CAS  Google Scholar 

  19. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104:1040–1046. https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  20. Ho J, Ertem MZ (2016) Calculating free energy changes in continuum solvation models. J Phys Chem B 120:1319–1329. https://doi.org/10.1021/acs.jpcb.6b00164

    Article  CAS  PubMed  Google Scholar 

  21. Yamana T, Tsuji A (1976) Comparative stability of cephalosporins in aqueous solution: kinetics and mechanisms of degradation. J Pharm Sci 65:1563–1574. https://doi.org/10.1002/jps.2600651104

    Article  CAS  PubMed  Google Scholar 

  22. Roy RK, Pal S, Hirao K (1999) On non-negativity of Fukui function indices. J Chem Phys 110:8236–8245. https://doi.org/10.1063/1.478792

    Article  CAS  Google Scholar 

  23. Galano A, Alvarez-Idaboy JR (2009) Guanosine + OH radical reaction in aqueous solution: a reinterpretation of the UV-Vis data based on thermodynamic and kinetic calculations. Org Lett 11:5114–5117. https://doi.org/10.1021/ol901862h

    Article  CAS  PubMed  Google Scholar 

  24. An T, Gao Y, Li G, Kamat PV, Peller J, Joyce MV (2014) Kinetics and mechanism of • OH mediated degradation of dimethyl phthalate in aqueous solution: experimental and theoretical studies. Environ Sci Technol 48:641–648

    Article  CAS  Google Scholar 

  25. Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395. https://doi.org/10.1016/S0378-4274(03)00257-1

    Article  CAS  PubMed  Google Scholar 

  26. Al-Musawi TJ, Kamani H, Bazrafshan E, Panahi AH, Silva MF, Abi G (2019) Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box-Behnken response surface methodology. Catal Letters 149:1186–1196

    Article  CAS  Google Scholar 

  27. Legnoverde MS, Simonetti S, Basaldella EI (2014) Influence of pH on cephalexin adsorption onto SBA-15 mesoporous silica: theoretical and experimental study. Appl Surf Sci 300:37–42

    Article  CAS  Google Scholar 

  28. Cinar SA, Ziylan-Yavaş A, Catak S, Ince NH, Aviyente V (2017) Hydroxyl radical-mediated degradation of diclofenac revisited: a computational approach to assessment of reaction mechanisms and by-products. Environ Sci Pollut Res 24:18458–18469. https://doi.org/10.1007/s11356-017-9482-7

    Article  CAS  Google Scholar 

  29. Tavasol F, Tabatabaie T, Ramavandi B, Amiri F (2020) Design a new photocatalyst of sea sediment/titanate to remove cephalexin antibiotic from aqueous media in the presence of sonication/ultraviolet/hydrogen peroxide: Pathway and mechanism for degradation. Ultrason Sonochem 65:105062. https://doi.org/10.1016/j.ultsonch.2020.105062

    Article  CAS  PubMed  Google Scholar 

  30. Farcasiu D (1975) The use and misuse of the Hammond postulate. J Chem Educ 52:76. https://doi.org/10.1021/ed052p76

    Article  CAS  Google Scholar 

  31. Guerra MMH, Alberola IO, Rodriguez SM, López AA, Merino AA, Alonso JMQ (2019) Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Res 156:232–240

    Article  Google Scholar 

  32. Hsu MH, Kuo TH, Chen YE, Huang CH, Hsu CC, Lin AYC (2018) Substructure reactivity affecting the manganese dioxide oxidation of cephalosporins. Environ Sci Technol 52:9188–9195. https://doi.org/10.1021/acs.est.8b02448

    Article  CAS  PubMed  Google Scholar 

  33. K. Kümmerer, Pharmaceuticals in the environment: sources, fate, effects and risks, Springer Science & Business Media, 2008.

Download references

Funding

This study was financially supported by the General Directorate of Scientific Research and Technological Development (DGRSDT) of Algeria through the national research program (PRFU N° B00L01UN180120220001).

Author information

Authors and Affiliations

Authors

Contributions

R. Masmoudi: investigation, methodology, writing—original draft, writing—reviewing and editing. S. Khettaf: methodology, validation. A. Soltani: formal analysis, validation. A. Dibi: conceptualization, validation. L. Messaadia: software, formal analysis. M. Benamira: supervision, validation, writing—reviewing and editing.

Corresponding authors

Correspondence to L. Messaadia or M. Benamira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, R., Khettaf, S., Soltani, A. et al. Cephalexin degradation initiated by OH radicals: theoretical prediction of the mechanisms and the toxicity of byproducts. J Mol Model 28, 141 (2022). https://doi.org/10.1007/s00894-022-05121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05121-y

Keywords

Navigation