Skip to main content
Log in

DFT investigations of AgMC7H10N2 (M = Cl, Br, and I) metal organic molecules: NMR, optoelectronic, and transport properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The full-potential linearized augmented plane wave (FP-LAPW) method was used for the calculation of the structural, nuclear magnetic resonance (NMR), optoelectronic, and thermoelectric properties of AgMC7H10N2 (M = Cl, Br, and I) compounds. The calculated wide band gap of AgMC7H10N2 (M = Cl, Br, and I) metal organic molecules with the density of states approach were 3.32, 3.29, and 3.10 eV, respectively. The NMR parameters are calculated for the Ag, Cl, Br, I, C, N, O, and H elements. It is found that by decreasing bandgap, the isotropic NMR chemical shielding values of Cl, Br, and I elements increase. The strong hybridization of Ag-4d, Cl-3p, Br-4p, and I-5p states are observed at the top of the valence band. The birefringence and anisotropic properties are observed in the optical spectra with high plasmon energies, and the figure of merit, ZT, of 0.98 for AgCl(C7H10N2) compound is found at 300 K. Hence, these compounds are attractive flexible metal organic molecules for optoelectronic and transport applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Wien2k software.

References

  1. Li B, Chrzanowski M, Zhang Y, Ma S (2016) Applications of metal-organic frameworks featuring multi-functional sites. Coord Chem Rev 307:106–129

    Article  CAS  Google Scholar 

  2. Gangu, Kranthi Kumar, Suresh Maddila, Saratchandra Babu Mukkamala, and Sreekantha B. Jonnalagadda (2016) "A review on contemporary metal–organic framework materials." Inorganica Chimica Acta 446: 61–74

  3. Popczyk A, Aamoum A, Migalska-Zalas A, Płóciennik P, Zawadzka A, Mysliwiec J, Sahraoui B (2019) Selected organometallic compounds for third order nonlinear optical application. Nanomaterials 9(2):254

    Article  CAS  Google Scholar 

  4. Phillips, Kaitlin A., Thomas M. Stonelake, Peter N. Horton, Simon J. Coles, Andrew J. Hallett, Sean P. O'Kell, Joseph M. Beames, and Simon JA Pope (2019) Dual visible/NIR emission from organometallic iridium (III) complexes. J Organomet Chem 893: 11–20

  5. Cada M (2005) Nonlinear optical devices. Optica Pura i Aplicada 38:1–11

    Google Scholar 

  6. Mahmood A, Wang J-L (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14(1):90–105

    Article  CAS  Google Scholar 

  7. Mahmood A, Wang J-L (2021) A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J Mater Chem A 9(28):15684–15695

    Article  CAS  Google Scholar 

  8. Mahmood, Asif, Ahmad Irfan, and Jin‐Liang Wang (2022) Developing efficient small molecule acceptors with sp2‐hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem–A Eur J 28, 2: e202103712

  9. Ahmed, Towfiq, T. Salim, Y. M. Lam, Elbert EM Chia, and Jian-Xin Zhu (2015) "Optical properties of organometallic perovskite: An ab initio study using relativistic GW correction and Bethe-Salpeter equation." EPL (Europhysics Letters) 108(6): 67015

  10. de Oliveira, Aline, Guilherme Ferreira de Lima, and Heitor Avelino De Abreu (2018) "Structural and electronic properties of M-MOF-74 (M= Mg, Co or Mn)." Chem Phys Lett 691: 283–290.

  11. Irfan, Ahmad, Aijaz Rasool Chaudhry, and Abdullah G. Al-Sehemi (2020) "Electron donating effect of amine groups on charge transfer and photophysical properties of 1, 3-diphenyl-1H-pyrazolo [3, 4-b] quinolone at molecular and solid state bulk levels." Optik 208: 164009.

  12. Irfan A, Al-Sehemi AG, Assiri MA, Ullah S (2020) Exploration the effect of metal and electron withdrawing groups on charge transport and optoelectronic nature of schiff base Ni (II), Cu (II) and Zn (II) complexes at molecular and solid-state bulk scales. Mater Sci Semicond Process 107:104855

    Article  CAS  Google Scholar 

  13. Irfan, Ahmad, Aijaz Rasool Chaudhry, Abdullah G. Al-Sehemi, Mohammed A. Assiri, and Arshad Hussain (2019) Charge carrier and optoelectronic properties of phenylimidazo [1, 5-a] pyridine-containing small molecules at molecular and solid-state bulk scales. Comput Mater Sci 170: 109179

  14. Irfan, Ahmad, Aijaz Rasool Chaudhry, Shabbir Muhammad, and Abdullah G. Al-Sehemi (2019) Exploring the effect of halogens on semiconducting nature of boron doped molecular precursor graphene nanoribbons at molecular and bulk level. Optik 179: 526–534

  15. Mahmood, Asif, et al. (2015) Effect of thiophene rings on UV/visible spectra and non‐linear optical (NLO) properties of triphenylamine based dyes: a quantum chemical perspective." J Phys Organ Chem 28.6: 418–422

  16. Janjua, Muhammad Ramzan Saeed Ashraf, Zain Hassan Yamani, Saba Jamil, Asif Mahmood, Imran Ahmad, Muhammad Haroon, Mudassir Hussain Tahir, Zhihua Yang, and Shilie Pan (2015) First principle study of electronic and non-linear optical (NLO) properties of triphenylamine dyes: interactive design computation of new NLO compounds. Australian J Chem 69(4): 467–472

  17. Mahmood, Asif, Muhammad Imran Abdullah, and Salah Ud-Din Khan (2015) Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 139: 425–430

  18. Mahmood, Asif, Salah Ud-Din Khan, and Usman Ali Rana (2014) Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells. J Comput Electron 13.4: 1033–1041

  19. Wang H, Choongho Yu (2019) Organic thermoelectrics: materials preparation, performance optimization, and device integration. Joule 3(1):53–80

    Article  CAS  Google Scholar 

  20. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1(10):1–14

    Article  Google Scholar 

  21. McKenzie JW, Chen-ho Wu, Bube RH (1972) Thermoelectric analysis of transport in linear transition-metal organometallic compounds. Appl Phys Lett 21(5):187–189

    Article  CAS  Google Scholar 

  22. Yu, Choongho, Yeon Seok Kim, Dasaroyong Kim, and Jaime C. Grunlan (2008) "Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Letters 8(12): 4428–4432

  23. Kim D, Kim Y, Choi K, Grunlan JC, Choongho Yu (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4(1):513–523

    Article  CAS  Google Scholar 

  24. Nakamura H, Ohto T, Ishida T, Asai Y (2013) Thermoelectric efficiency of organometallic complex wires via quantum resonance effect and long-range electric transport property. J Am Chem Soc 135(44):16545–16552

    Article  CAS  Google Scholar 

  25. Sun Y, Wei Xu, Di C-a, Zhu D (2017) Metal-organic complexes-towards promising organic thermoelectric materials. Synth Met 225:22–30

    Article  CAS  Google Scholar 

  26. Jin, Huile, Jun Li, James Iocozzia, Xin Zeng, Pai‐Chun Wei, Chao Yang, Nan Li et al. (2019) "Hybrid organic-inorganic thermoelectric materials and devices." Angewandte Chemie International Edition 58(43): 15206–15226

  27. Kaur H, Shrivastav V, Kumar M, Sharma AL, Deep A (2020) Investigations on optoelectronic properties of metal (Terbium)-organic framework/tris (8-hydroxyquinolinato) aluminium composite for potential device applications. Mater Chem Phys 255:123569

    Article  CAS  Google Scholar 

  28. Chen Z, Cui Y, Jin Y, Liu L, Yan J, Sun Y, Zou Ye, Sun Y, Wei Xu, Zhu D (2020) Nanorods of a novel highly conductive 2D metal–organic framework based on perthiolated coronene for thermoelectric conversion. J Mater Chem C 8(24):8199–8205

    Article  CAS  Google Scholar 

  29. Fortin D, Drouin M, Harvey PD (2000) Preparation and characterization of [M (dmb) 2] TCNQ⊙ x TCNQ° n polymers (M= Cu, Ag; dmb= 1, 8-diisocyano-p-menthane; x= 0, 0.5, 1.0, 1.5; TCNQ= 7, 7, 8, 8-tetracyano-p-quinodimethane) and design of new semi-and photoconducting organometallic materials. Inorg Chem 39(13):2758–2769

    Article  CAS  Google Scholar 

  30. Mann KR, Lewis NS, Miskowski VM, Erwin DK, Hammond GS, Gray HB (1977) Solar energy storage. Production of hydrogen by 546-nm irradiation of a dinuclear rhodium (I) complex in acidic aqueous solution. J Am Chem Soc 99(16):5525–5526

    Article  CAS  Google Scholar 

  31. Sigal IS, Kent R. Mann, and Harry B. Gray (1980) Solar energy storage reactions. Thermal and photochemical redox reactions of polynuclear rhodium isocyanide complexes. J Am Chem Soc 102(24): 7252–7256

  32. Chemin, N., A. Du Moulinet D'Hardemare, S. Bouquillon, D. Fagret, and M. Vidal (1996) "Synthesis and biological evaluation of new diisocyanide-and triisocyanide-99mTc complexes." Appl Radiat Isot 47, no. 5–6: 479–487

  33. Al-Ktaifani MM, Rukiah MK, Shaaban AK (2008) Synthesis and solid state characterization of organometallic polymer of Ag (I) using 2, 2-dimethyl-1, 3-diisocyano pro pane ligand. Pol J Chem 82:547-557

  34. Jover Modrego, Jesús (2017) Quantitative DFT modeling of product concentration in organometallic reactions: Cu-mediated pentafluoroethylation of benzoic acid chlorides as a case study. Phys Chem Chem Phys 2017 19(43):29344–29353

  35. Lejaeghere K, Bihlmayer G, Bjorkman T, Blaha P, Blugel S, Blum V, Caliste D, Castelli IE, Clark SJ, Dal Corso A, de Gironcoli S, Deutsch T, Dewhurst JK, Di Marco I, Draxl C, Dułak M, Eriksson O, Flores-Livas JA, Garrity KF, Genovese L, Giannozzi P, Giantomassi M, Goedecker S, Gonze X, Granas O, Gross EKU, Gulans A, Gygi F, Hamann DR, Hasnip PJ, Holzwarth NAW, Iusan D, Jochym DB, Jollet F, Jones D, Kresse G, Koepernik K, Kucukbenli E, Kvashnin YO, Locht ILM, Lubeck S, Marsman M, Marzari N, Nitzsche U, Nordstrom L, Ozaki T, Paulatto L, Pickard CJ, Poelmans W, Probert MIJ, Refson K, Richter M, Rignanese G.-M, Saha S, Scheffler M, Schlipf M, Schwarz K, Sharma S, Tavazza F, Thunstrom P, Tkatchenko A, Torrent M, Vanderbilt D, van Setten MJ, Van Speybroeck V, Wills JM, Yates JR, Zhang G.-X, and Cottenier S (2016) Reproducibility in density functional theory calculations of solids. Science 351, aad3000

  36. Blaha, Peter, Karlheinz Schwarz, Fabien Tran, Robert Laskowski, Georg KH Madsen, and Laurence D. Marks (2020) WIEN2k: an APW+ lo program for calculating the properties of solids. J Chem Phys 152,(7): 074101

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  38. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102(22):226401

    Article  Google Scholar 

  39. Rondinelli JM, Deng B, Marks LD (2007) Enhancing structure relaxations for first-principles codes: an approximate Hessian approach. Comput Mater Sci 40(3):345–353. https://doi.org/10.1016/j.commatsci.2007.01.004

    Article  CAS  Google Scholar 

  40. Schwarz, Karlheinz, Peter Blaha, and Trickey SB (2020) Electronic structure of solids with WIEN2k. Mol Phys 108(21–23: 3147–3166

  41. Schwarz K, Blaha P (2003) Solid state calculations using WIEN2k. Comput Mater Sci 28(2):259–273

    Article  CAS  Google Scholar 

  42. Hosseini SM, Rahnamaye Aliabad HA, and Ahmad Kompany (2005) First-principles study of the optical properties of pure α-Al2O3 and La aluminates. Eur Phys J B-Condensed Matter Complex Syst 43, no. 4 (2005): 439–444

  43. Madsen, Georg KH, and David J. Singh (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175.1: 67–71

  44. Chmielowski R, Péré D, Bera C, Opahle I, Xie W, Jacob S, Capet F, Roussel P, Weidenkaff A, Madsen GK, Dennler G (2015) Theoretical and experimental investigations of the thermoelectric properties of Bi2S3. J Appl Phys 117(12):125103

    Article  Google Scholar 

  45. Zhang, Jiawei, Lirong Song, Georg KH Madsen, Karl FF Fischer, Wenqing Zhang, Xun Shi, and Bo B. Iversen (2016) Designing high-performance layered thermoelectric materials through orbital engineering. Nat Commun 7(1): 1–7

  46. Laskowski R, Blaha P (2012) Calculations of NMR chemical shifts with APW-based methods. Phys Rev B 85(3):035132

    Article  Google Scholar 

  47. Laskowski R, Blaha P (2014) Calculating NMR chemical shifts using the augmented plane-wave method. Phys Rev B 89(1):014402

    Article  Google Scholar 

  48. Laskowski R, Blaha P (2015) NMR shielding in metals using the augmented plane wave method. The Journal of Physical Chemistry C 119(33):19390–19396

    Article  CAS  Google Scholar 

  49. Al-Ktaifani M, Rukiah M (2010) Poly [μ-bromido-μ-(2, 2-dimethylpropane-1, 3-diyl diisocyanide)-silver (I)]: a powder diffraction study. Acta Crystallogr Sect E: Struct Rep Online 66(12):m1555–m1556

    Article  CAS  Google Scholar 

  50. Rukiah M, Al-Ktaifani M (2009) Powder study of poly [(μ2-2, 2-dimethylpropane-1, 3-diyl diisocyanide)-μ2-iodido-silver (I)]. Acta Crystallogr C 65(3):m135–m138

    Article  CAS  Google Scholar 

  51. Blöchl, Peter E., Ove Jepsen, and Ole Krogh Andersen (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23): 16223

  52. Rahnamaye Aliabad HA, Hosseini SM, Ahmad Kompany, Youssefi A, Attaran Kakhki E (2009) Optical properties of pure and transition metal‐doped indium oxide. Physica Status Solidi (B) 246(5): 1072–1081

  53. Shookoh, F. Amiri, Hossien Tavakoli-Anbaran, and HA Rahnamaye Aliabad (2020) 31P nuclear magnetic resonance, optical and thermal spectra in MP3 (M= Ir, Co, Rh, Ni) compounds by DFT. Comput Theoretical Chem 1186: 112902

  54. Fijolek HG, Oriskovich TA, Benesi AJ, González-Duarte P, Natan MJ (1996) Solid-state 109Ag NMR: a sensitive environmental probe for silver thiolates. Inorg Chem 35(4):797–799

    Article  CAS  Google Scholar 

  55. Plischke JK, Benesi AJ, Vannice MA (1992) Solid-state silver-109 NMR characterization of silver dispersed on oxide supports. J Phys Chem 96(9):3799–3806

    Article  CAS  Google Scholar 

  56. Penner GH, Li W (2004) Silver-109 NMR spectroscopy of inorganic solids. Inorg Chem 43(18):5588–5597

    Article  CAS  Google Scholar 

  57. Rahnamaye Aliabad HA, and Bashi M (2019) Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. J Mater Sci: Mater Electron 30(20): 18720–18728

  58. Wang, Hong, Jui‐Hung Hsu, Su‐In Yi, Suk Lae Kim, Kyungwho Choi, Gang Yang, and Choongho Yu (2015) Thermally driven large n‐type voltage responses from hybrids of carbon nanotubes and poly (3, 4‐ethylenedioxythiophene) with tetrakis (dimethylamino) ethylene. Adv Mater 27(43): 6855–6861

  59. Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377

    Article  CAS  Google Scholar 

  60. Wang, Fancy Qian, Shunhong Zhang, Jiabing Yu, and Qian Wang (2015) Thermoelectric properties of single-layered SnSe sheet." Nanoscale 7(38): 15962–15970

  61. Sharma S, Schwingenschlögl U (2016) Thermoelectric response in single quintuple layer Bi2Te3. ACS Energy Lett 1(4):875–879

    Article  CAS  Google Scholar 

  62. Chen K-X, Wang X-M, Mo D-C, Lyu S-S (2015) Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. J Phys Chem C 119(47):26706–26711

    Article  CAS  Google Scholar 

  63. Kim G-H, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12(8):719–723

    Article  CAS  Google Scholar 

  64. Zhao, Weiyun, Shufen Fan, Ni Xiao, Dayong Liu, Yee Yan Tay, Cui Yu, Daohao Sim et al. (2012) Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ Sci 5(1): 5364–5369

  65. Sun YH, Qiu L, Tang LP, Geng H, Wang HF, Zhang FJ, Huang DZ, Xu W, Yue P, Guan YS, Jiao F, Sun YM, Tang DW, Di CA, Yi YP, Zhu DB (2016) Flexible n-type high-performance thermoelectric thin films of poly (nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater 28:3351–3358

    Article  CAS  Google Scholar 

  66. Wan, Chunlei, Xiaokun Gu, Feng Dang, Tomohiro Itoh, Yifeng Wang, Hitoshi Sasaki, Mami Kondo et al. (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 14(6): 622–627

  67. Bubnova, Olga, Zia Ullah Khan, Abdellah Malti, Slawomir Braun, Mats Fahlman, Magnus Berggren, and Xavier Crispin (2011) "Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene). Nat Mater 10(6): 429–433

  68. Chen Y, He M, Liu B, Bazan GC, Zhou J, Liang Z (2017) Bendable n-type metallic nanocomposites with large thermoelectric power factor. Adv Mater 29(4):1604752

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Blaha and Prof. Madsen of the Vienna University of Technology, Austria, for their assistance in using of Wien2k and BoltzTrap packages.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. M. Samsami performed the computations by using Wien2k software. Behnam Azadegan and H. A. Rahnamaye Aliabad supervised the findings of this work and wrote the manuscript. F. Amiri-Shookoh performed formal analysis and writing—review and editing.

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsami, M., Azadegan, B., Rahnamaye Aliabad, H.A. et al. DFT investigations of AgMC7H10N2 (M = Cl, Br, and I) metal organic molecules: NMR, optoelectronic, and transport properties. J Mol Model 28, 136 (2022). https://doi.org/10.1007/s00894-022-05114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05114-x

Keywords

Navigation