Skip to main content
Log in

Adsorption of water on C sites vacancy defected graphene/h-BN: First-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Heterostructures (HS), vacancy defects in HS, and molecular adsorption on defected HS of 2D materials are fervently inspected for a profusion of applications because of their aptness to form stacked layers that confer approach to an amalgamation of favorable electronic and magnetic properties. In this context, graphene (Gr), hexagonal boron nitride (h-BN), HS of graphene/h-BN (Gr/h-BN), and molecular adsorption on Gr/h-BN offer promising prospects for electronic, spintonic, and optoelectronic devices. In this study, we investigated the structural, electronic, and magnetic properties of C sites vacancy defects in Gr/h-BN HS and adsorption of water molecule on defected Gr/h-BN HS materials by using first-principles calculations based on spin-polarized density functional theory method within van der Waals (vdW) corrections DFT-D2 approach. We found that these considered materials are stable 2D vdW HS. Based on band structure calculations, they are semimetallic, and on density of states and partial density of states analysis, they are magnetic materials. The magnetic moment developed in these defected systems is due to the unpaired up-spin and down-spin states in the orbitals of atoms present in the materials created by the vacancy defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data to reproduce the figures and tables of this paper will be provided by the corresponding author on request to do so.

Code availability

We used Quantum software to produce all the data in this paper and the code is freely available as an open source code.

References

  1. Din HU, Idrees M, Albar A, Shafiq M, Ahmad I, Nguyen CV, Amin B (2019) Rashba spin splitting and photocatalytic properties of GeC− MSSe (M= Mo, W) van der Waals heterostructures. Phys Rev B 100(16):165425

    Article  CAS  Google Scholar 

  2. Wang J, Ma F, Liang W, Sun M (2017) Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater Today Phys 2:6–34

    Article  Google Scholar 

  3. Vu TV, Hieu NV, Phuc HV, Hieu NN, Bui HD, Idrees M, …, Nguyen CV (2020) Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Appl Surf Sci 507:145036

  4. Phuc HV, Hieu NN, Hoi BD, Phuong LT, Nguyen CV (2018) First principle study on the electronic properties and Schottky contact of graphene adsorbed on MoS2 monolayer under applied out-plane strain. Surf Sci 668:23–28

    Article  CAS  Google Scholar 

  5. Debbichi L, Eriksson O, Lebègue S (2014) Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory. Phys Rev B 89(20):205311

    Article  CAS  Google Scholar 

  6. Ghorbani-Asl M, Bristowe PD, Koziol K, Heine T, Kuc A (2016) Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions. 2D Mater 3(2):025018

    Article  CAS  Google Scholar 

  7. Phan AD, Viet NA, Poklonski NA, Woods LM, Le CH (2012) Interaction of a graphene sheet with a ferromagnetic metal plate. Phys Rev B 86(15):155419

    Article  CAS  Google Scholar 

  8. Yu WJ, Li Z, Zhou H, Chen Y, Wang Y, Huang Y, Duan X (2013) Vertically Stacked multi-heterostructures of layered materials for logic transistors and Complementary inverters. Nat Mater 12(3):246–252

    Article  CAS  PubMed  Google Scholar 

  9. Zhu T, Ertekin E (2014) Phonon transport on two-dimensional graphene/boron nitride superlattices. Phys Rev B 90(19):195209

    Article  CAS  Google Scholar 

  10. Huang Z, Liu H, Hu R, Qiao H, Wang H, Liu Y, Zhang H (2020) Structures, Properties and application of 2D monoelemental materials (Xenes) as graphene analogues Under defect engineering. Nano Today 35:100906

    Article  CAS  Google Scholar 

  11. Priyadarsini A, Mallik BS (2021) Aqueous Affinity and Interfacial Dynamics of Anisotropic Buckled Black Phosphorous. J Phys Chem B 125(27):7527–7536

    Article  CAS  PubMed  Google Scholar 

  12. Hu Z, Wu Z, Han C, He J, Ni Z, Chen W (2018) Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev 47(9):3100–3128

    Article  CAS  PubMed  Google Scholar 

  13. Han SW, Yun WS, Woo WJ, Kim H, Park J, Hwang YH, Nguyen TK, Le CT, Kim YS, Kang M, Ahn CW, Hong SC (2021) Interface defect engineering of a large‐scale CVD‐grown MoS2 monolayer via residual sodium at the SiO2/Si substrate. Advanced Materials Interfaces 8(14):2100428

  14. Kostov MK, Santiso EE, George AM, Gubbins KE, Nardelli MB (2005) Dissociation of water on defective carbon substrates. Phys Rev Lett 95(13):136105

    Article  CAS  PubMed  Google Scholar 

  15. Bollinger MV, Lauritsen JV, Jacobsen KW, Nørskov JK, Helveg S, Besenbacher F (2001) One-dimensional metallic edge states in MoS2. Phys Rev Lett 87(19):196803

    Article  CAS  PubMed  Google Scholar 

  16. Neupane HK, Adhikari NP (2021) First-principles study of structure, electronic, and magnetic properties of C sites vacancy defects in water adsorbed graphene/MoS2 van der Waals heterostructures. J Mol Model 27(3):1–12

    Article  CAS  Google Scholar 

  17. Xu R, Zou X, Liu B, Cheng HM (2018) Computational design and property predictions for two-dimensional nanostructures. Mater Today 21(4):391–418

    Article  CAS  Google Scholar 

  18. Bafekry A, Shayesteh SF, Peeters FM (2019) Two-dimensional carbon nitride (2DCN) nanosheets: Tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering. J Appl Phys 126(21):215104

    Article  CAS  Google Scholar 

  19. Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer graphene− BN heterostructures. Nano Lett 11(3):1070–1075

    Article  CAS  PubMed  Google Scholar 

  20. Slotman GJ, Van Wijk MM, Zhao PL, Fasolino A, Katsnelson MI, Yuan S (2015) Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys Rev Lett 115(18):186801

    Article  CAS  PubMed  Google Scholar 

  21. Neupane HK, Adhikari NP (2021) Effect of vacancy defects in 2D vdW graphene/h-BN heterostructure: First-principles study. AIP Adv 11(8):085218

    Article  CAS  Google Scholar 

  22. Liu Z, Song L, Zhao S, Huang J, Ma L, Zhang J, Ajayan PM (2011) Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett 11(5):2032–2037

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Lee I, Lim D, Kang M, Kim GH, Aoki N, Taniguchi T (2015) Raman Shift and electrical properties of MoS2 bilayer on boron nitride substrate. Nanotechnology 26(29):295702

    Article  PubMed  CAS  Google Scholar 

  24. Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 9(5):5246–5254

    Article  CAS  PubMed  Google Scholar 

  25. Okada M, Sawazaki T, Watanabe K, Taniguch T, Hibino H, Shinohara H, Kitaura R (2014) Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8(8):8273–8277

    Article  CAS  PubMed  Google Scholar 

  26. Beniwal S, Hooper J, Miller DP, Costa PS, Chen G, Liu SY, Enders A (2017) Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3):2486–2493

    Article  CAS  PubMed  Google Scholar 

  27. Bououden W, Benguerba Y, Darwish AS, Attoui A, Lemaoui T, Balsamo M, Alnashef IM (2021) Surface adsorption of Crizotinib on carbon and boron nitride nanotubes as Anti-Cancer drug Carriers: COSMO-RS and DFT molecular insights. J Mol Liq 338:116666

    Article  CAS  Google Scholar 

  28. Nakhli A, Bergaoui M, Toumi KH, Khalfaoui M, Benguerba Y, Balsamo M, …, Erto A (2020) Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: A multi-model’s approach. Comput Chem Eng 140:106965

  29. Darwish AS, Warrag SE, Lemaoui T, Alseiari MK, Hatab FA, Rafay R, …, Alamoodi N (2021) Green Extraction of Volatile Fatty Acids from Fermented Wastewater Using Hydrophobic Deep Eutectic Solvents. Fermentation 7(4):226

  30. Benabid S, Streit AF, Benguerba Y, Dotto GL, Erto A, Ernst B (2019) Molecular modeling of anionic and cationic dyes adsorption on sludge derived activated carbon. J Mol Liq 289:111119

    Article  CAS  Google Scholar 

  31. Priyadarsini A, Mallik BS (2021) Effects of Doped N, B, P, and S Atoms on Graphene toward Oxygen Evolution Reactions. ACS Omega 6(8):5368–5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Priyadarsini A, Mallik BS (2021) Amphiphilicity of Intricate Layered Graphene/g- C3N4 Nanosheets. J Phys Chem B 125(42):11697–11708

    Article  CAS  PubMed  Google Scholar 

  33. Priyadarsini A, Mallik BS (2022) Site dependent catalytic water dissociation on an anisotropic buckled black phosphorus surface. Phys Chem Chem Phys 24(4):2582–2591. https://doi.org/10.1039/D1CP05249G

    Article  CAS  PubMed  Google Scholar 

  34. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Article  Google Scholar 

  35. Grimme S (2004) Accurate description of van der Waals complexes by density Functional theory including empirical corrections. J Comput Chem 25(12):1463–1473

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  37. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Dal Corso A (2009) QUANTUM ESPRESSO: modular and open-source software Project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  PubMed  Google Scholar 

  38. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of Crystals with the quasi-Newton method. J Comput Phys 131(1):233–240

    Article  CAS  Google Scholar 

  39. Pack JD, Monkhorst HJ (1977) Special points for Brillouin-zone integrations a reply. Phys Rev B 16(4):1748

    Article  Google Scholar 

  40. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Thermal Contraction and disordering of the Al (110) surface. Phys Rev Lett 82(16):3296

    Article  CAS  Google Scholar 

  41. Morgan RB, Scott DS (1986) Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric matrices. SIAM J Sci Stat Comput 7(3):817–825

    Article  Google Scholar 

  42. Jayaprakash GK, Flores-Moreno R (2018) Regioselectivity in hexagonal boron nitride co-doped graphene. New J Chem 42(23):18913–18918

    Article  CAS  Google Scholar 

  43. Wang J, Ma F, Sun M (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7(27):16801–16822

    Article  CAS  Google Scholar 

  44. Pham KD, Nguyen CV (2018) First principles calculations of the geometric structures and electronic properties of van der Waals heterostructure based on graphene, hexagonal boron nitride and molybdenum diselenide. Diam Relat Mater 88:151–157

    Article  CAS  Google Scholar 

  45. Yao W, Fan L (2021) Defects in Graphene/h-BN Planar Heterostructures: Insights into the Interfacial Thermal Transport Properties. Nanomaterials 11(2):500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kudur Jayaprakash G, Casillas N, Astudillo-Sánchez PD, Flores-Moreno R (2016) Role of defects on regioselectivity of nano pristine graphene. J Phys Chem A 120(45):9101–9108

    Article  CAS  PubMed  Google Scholar 

  47. Martin RM (2020) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Liu YJ, Gao B, Xu D, Wang HM, Zhao JX (2014) Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: Electronic, magnetic properties, and reactivity. Phys Lett A 378(40):2989–2994

    Article  CAS  Google Scholar 

  49. Ooi N, Rairkar A, Lindsley L, Adams JB (2005) Electronic structure and bonding in hexagonal boron nitride. J Phys Condens Matter 18(1):97

    Article  CAS  Google Scholar 

  50. Aggoune W, Cocchi C, Nabok D, Rezouali K, Belkhir MA, Draxl C (2018) Dimensionality of excitons in stacked van der Waals materials: The example of hexagonal boron nitride. Phys Rev B 97(24):241114

    Article  CAS  Google Scholar 

  51. Woods CR, Britnell L, Eckmann A, Ma RS, Lu JC, Guo HM, Novoselov KS (2014) Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat Phys 10(6):451–456

    Article  CAS  Google Scholar 

  52. Aggoune W, Cocchi C, Nabok D, Rezouali K, Belkhir MA, Draxl C (2020) Structural, electronic, and optical properties of periodic graphene/h-BN van der Waals heterostructures. Phys Rev Mater 4(8):084001

    Article  CAS  Google Scholar 

  53. Vu TV, Hieu NV, Phuc HV, Hieu NN, Bui HD, Idrees M, Nguyen CV (2020) Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Appl Surf Sci 507:145036

    Article  CAS  Google Scholar 

  54. Peng Q, Guo Z, Sa B, Zhou J, Sun Z (2018) New gallium chalcogenides/ Arsenene van der Waals heterostructures promising for photocatalytic water splitting. Int J Hydrogen Energy 43(33):15995–16004

    Article  CAS  Google Scholar 

  55. Li S, Sun M, Chou JP, Wei J, Xing H, Hu A (2018) First-principles Calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures. Phys Chem Chem Phys 20(38):24726–24734

    Article  CAS  PubMed  Google Scholar 

  56. Lamichhane S, Lage P, Khatri GB, Pantha N, Adhikari NP, Sanyal B (2016) First-Principles Study of Adsorption of Halogen Molecules on Graphene-MoS2 Bilayer Hetero-system. In J Phys Conf Ser 765(1):012011

    Article  CAS  Google Scholar 

  57. Hou Z, Wang X, Ikeda T, Terakura K, Oshima M, Kakimoto MA, Miyata S (2012) Interplay between nitrogen dopants and native point defects in graphene. Phys Rev B 85(16):165439

    Article  CAS  Google Scholar 

  58. Thierfelder C, Witte M, Blankenburg S, Rauls E, Schmidt WG (2011) Methane adsorption on graphene from first principles including dispersion interaction. Surf Sci 605(7–8):746–749

    Article  CAS  Google Scholar 

  59. Nasresfahani S, Safaiee R, Sheikhi MH (2017) Influence of Pd/Pd2 decoration on the structural, electronic and sensing properties of monolayer graphene in the presence of methane molecule: A dispersion-corrected DFT study. Surf Sci 662:93–101

    Article  CAS  Google Scholar 

  60. Vidali G, Ihm G, Kim HY, Cole MW (1991) Potentials of physical adsorption. Surf Sci Rep 12(4):135–181

    Article  Google Scholar 

  61. Neupane HK, Adhikari NP (2020) Structure, electronic and magnetic properties of 2D Graphene-Molybdenum diSulphide (G-MoS2) heterostructure (HS) with vacancy defects at Mo sites. Comput Condens Matter 24:e00489

    Article  Google Scholar 

  62. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and Evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6):404–409

    Article  CAS  PubMed  Google Scholar 

  63. Neupane HK, Adhikari NP (2020) Tuning structural, electronic, and magnetic properties of c sites vacancy defects in graphene/MoS2 van der Waals heterostructure materials: a first-principles study. Adv Condens Matter Phys 2020:1–11

    Article  CAS  Google Scholar 

  64. Neupane HK, Adhikari NP (2021) Structural, electronic and magnetic properties of S sites vacancy defects graphene/MoS2 van der Waals heterostructures: First-principles study. Int J Comput Mater Sci Eng 10(02):2150009

  65. Neupane HK, Adhikari NP (2021) Electronic and magnetic properties of defected MoS2 monolayer. BIBECHANA 18(2):68–79

    Article  Google Scholar 

  66. Neupane HK, Adhikari NP (2021) Structural, electronic and magnetic properties of defected water adsorbed single-layer MoS2. J Inst Sci Technol 26(1):43–50

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from UGC Nepal grants Ph. D. 075/76-S & T-09, TWAS research grants RG 20–316, and network project NT-14 of ICTP/OEA.

Author information

Authors and Affiliations

Authors

Contributions

HKN carried out all the calculations whereas NPA conceived the idea and both the authors analyzed the results and read the manuscript.

Corresponding author

Correspondence to Narayan Prasad Adhikari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, H.K., Adhikari, N.P. Adsorption of water on C sites vacancy defected graphene/h-BN: First-principles study. J Mol Model 28, 107 (2022). https://doi.org/10.1007/s00894-022-05101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05101-2

Keywords

Navigation