Skip to main content
Log in

A DFT study on the reaction mechanisms of the oxidation of ethylene mediated by technetium and manganese oxo complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The oxidation of ethylene catalyzed by manganese and technetium oxo complexes of the type MO3L (M = Tc, Mn, and L = O, Cl, F, OH, Br, I) on both singlet and triplet potential energy surfaces (PESs) have been studied. All molecular structures were stable on the singlet PES except for the formation of the dioxylate intermediate for the MnO3L (L = O, Cl, F, OH, Br, I) catalyzed pathway. Frontier molecular orbital calculations showed that electrons flow from the HOMO of ethylene into the LUMO of the metal-oxo complex for all complexes studied except for MO3L (M = Tc, Mn, and L = O) where the vice versa occurs. In the reaction of both TcO3L and MnO3L (L = O, Cl, F, OH, Br, I) with ethylene, it was observed that the formation of the dioxylate intermediate along the [3 + 2] addition pathway on the singlet reaction surface is both kinetically and thermodynamically favorable over its formation via the [2 + 2] pathway. Furthermore, it was observed that TcO4 and MnO4 catalyzed pathways exclusively form diols on the singlet PES. The formation of epoxides on the singlet surface is kinetically favorable through the [2 + 1] and [2 + 2] channel for the MnO3L (L = F, Cl, Br, I, OH) and TcO3L (L = F, Cl, Br, I, OH) catalyzed surfaces respectively. In all cases, the TcO3L complexes were found to be polar compared to the MnO3L complexes. The MnO4 (singlet) and MnO3F (singlet) are the best catalysts for the exclusive formation of the diols and epoxides respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available upon request to the corresponding author.

References

  1. Deubel DV, Frenking G (2003) [3+2] versus [2+2] addition of metal oxides across C=C bonds. Reconciliation of experiment and theory. Acc Chem Res 36(9):645–651. https://doi.org/10.1021/ar020268q

    Article  CAS  PubMed  Google Scholar 

  2. Dauth A, Love JA (2011) Reactivity by design-metallaoxetanes as centerpieces in reaction development. Chem Rev 111(3):2010–2047. https://doi.org/10.1021/cr100388p

    Article  CAS  PubMed  Google Scholar 

  3. Deubel DV (2003) Reactivity of osmium tetraoxide towards nitrogen heterocycles: Implications for the molecular recognition of DNA mismatch. Angew Chemie Int Ed 42(17):1974–1977. https://doi.org/10.1002/anie.200250462

    Article  CAS  Google Scholar 

  4. Schröder M (1980) Osmium tetraoxide CIS hydroxylation of unsaturated substrates. Chem Rev 80(2):187–213. https://doi.org/10.1021/cr60324a003

    Article  Google Scholar 

  5. Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Catalytic asymmetric dihydroxylation. Chem Rev 94(8):2483–2547. https://doi.org/10.1021/cr00032a009

    Article  CAS  Google Scholar 

  6. Tia R, Adei E (2011) [3+2] Versus [2+2] addition of metal oxides across CC bonds: a theoretical study of the mechanisms of oxidation of ethylene by osmium oxide complexes. Comput Theor Chem 977(1–3):140–147. https://doi.org/10.1016/j.comptc.2011.09.027

    Article  CAS  Google Scholar 

  7. Khouw ME, Dartt CB, Labinger CB, Davis A (1994) Journal of Catalysis 1994 Khouw C.pdf. J Catalysis 149:195–205

    Article  CAS  Google Scholar 

  8. Mimoun H, Mignard M, Brechot P, Saussine L (1986) Selective epoxidation of olefins by oxo[N-(2-oxidophenyl)salicylidenaminato]vanadium(V) alkylperoxides. On the mechanism of the halcon epoxidation process. J Am Chem Soc 108(13):3711–3718. https://doi.org/10.1021/ja00273a027

    Article  CAS  Google Scholar 

  9. Sharpless KB, Teranishi AY, Bäckvall JE (1977) Chromyl chloride oxidations of olefins. Possible role of organometallic intermediates in the oxidations of olefins by oxo transition metal species. J Am Chem Soc 99(9):3120–3128. https://doi.org/10.1021/ja00451a043

    Article  CAS  Google Scholar 

  10. DG LEE (1982) Phase transfer assisted permanganate oxidations. 147–206. https://doi.org/10.1016/b978-0-12-697253-5.50007-9

  11. Pietsch MA, Russo TV, Murphy RB, Martin RL, Rappé AK (1998) LReO3 epoxidizes, cis-dihydroxylates, and cleaves alkenes as well as alkenylates aldehydes: toward an understanding of why. Organometallics 17(13):2716–2719. https://doi.org/10.1021/om9800501

    Article  CAS  Google Scholar 

  12. Nelson DW et al (1997) Toward an understanding of the high enantioselectivity in the osmium-catalyzed asymmetric dihydroxylation. 4. Electronic effects in amine-accelerated osmylations. J Am Chem Soc 119(8):1840–1858. https://doi.org/10.1021/ja961464t

    Article  CAS  Google Scholar 

  13. Herrmann WA, Kühn FE (1997) Organorhenium oxides. Acc Chem Res 30(4):169–180. https://doi.org/10.1021/ar9601398

    Article  CAS  Google Scholar 

  14. Romão CC, Kühn FE, Herrmann WA (1997) Rhenium(VII) oxo and imido complexes: synthesis, structures, and applications. Chem Rev 97(8):3197–3246. https://doi.org/10.1021/cr9703212

    Article  PubMed  Google Scholar 

  15. Aniagyei A, Tia R, Adei E (2013) A theoretical study of the mechanisms of oxidation of ethylene by manganese oxo complexes. Dalt Trans 42(40):14411–14423. https://doi.org/10.1039/c3dt51700d

    Article  CAS  Google Scholar 

  16. Criegee R (1936) Osmiumsäure-ester als Zwischenprodukte bei Oxydationen. Justus Liebigs Ann Chem 522(1):75–96. https://doi.org/10.1002/jlac.19365220110

    Article  CAS  Google Scholar 

  17. March’s advanced organic chemistry. .

  18. Al-Ajlouni AM, Espenson JH (1995) Epoxidation of styrenes by hydrogen peroxide as catalyzed by methylrhenium trioxide. J Am Chem Soc 117(36):9243–9250. https://doi.org/10.1021/ja00141a016

    Article  CAS  Google Scholar 

  19. Herrmann WA, Alberto R, Kiprof P, Baumgärtner F (1990) Alkyltechnetium oxides: first examples and reactions. Angew Chem Int Ed Engl 29(2):189–191. https://doi.org/10.1002/anie.199001891

    Article  Google Scholar 

  20. Gisdakis P, Rösch N (2001) [2+3] cycloaddition of ethylene to transition metal oxo compounds. Analysis of density functional results by Marcus theory. J Am Chem Soc 123(4):697–701. https://doi.org/10.1021/ja0026915

    Article  CAS  PubMed  Google Scholar 

  21. Haunschild R, Frenking G (2008) Quantum chemical study of ethylene addition to group-7 oxo complexes MO2(CH3)(CH2) (M = Mn, Tc, Re). J Organomet Chem 693(24):3627–3637. https://doi.org/10.1016/j.jorganchem.2008.09.007

    Article  CAS  Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  23. Buchachenko AL (2000) Recent advances in spin chemistry. Pure Appl Chem 72(12):2243–2258. https://doi.org/10.1351/pac200072122243

    Article  CAS  Google Scholar 

  24. Schröder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33(3):139–145. https://doi.org/10.1021/ar990028j

    Article  CAS  PubMed  Google Scholar 

  25. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  26. Colle R, Salvetti O (1990) Generalization of the Colle–Salvetti correlation energy method to a many‐determinant wave function. 534. https://doi.org/10.1063/1.459553

  27. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  28. Hehre W, Ohlinger S, Klunzinger P, Deppmeier B, Driessen A, Johnson J (2017) Spartan’16 tutorial and user’s guide. 552

  29. (1993) Development of the Colic-Salvetti correlation-energy into a functional of the electron density formula. J Chem Phys 98(2): 1372–1377. https://doi.org/10.1063/1.464304

  30. Clark M, Cramer RD, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10(8):982–1012. https://doi.org/10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  31. Fosu EA, Obuah C, Hamenu L, Aniagyei A, Ainooson MK, Govender KK (2021) Quantum mechanistic studies of the oxidation of ethylene by rhenium oxo complexes. J Chem 2021:1–11. https://doi.org/10.1155/2021/7931956

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the University of Johannesburg for using the Spartan cluster and the Centre for High-Performance Computing (CHPC-South Africa) for using the cluster.

Funding

The authors received financial support from the University of Ghana.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Collins Obuah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fosu, E.A., Obuah, C., Hamenu, L. et al. A DFT study on the reaction mechanisms of the oxidation of ethylene mediated by technetium and manganese oxo complexes. J Mol Model 28, 94 (2022). https://doi.org/10.1007/s00894-022-05092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05092-0

Keywords

Navigation