Skip to main content
Log in

First-principles study on electronic and optical properties of single-walled carbon nanotube under an external electric field

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the electronic and optical properties of one-dimensional (1D) single-walled carbon nanotube (SWCNT) nanostructures, and under the external electric field \(({E}_{ext})\) applied in the z-direction, are investigated using density functional theory (DFT) calculations. The applied \({E}_{ext}\) leads to significant modulation of the bandgap and changes the total density of states (TDOS), partial density of states (PDOS), absorption coefficient, dielectric function, optical conductivity, refractive index, and the loss function. The application of the \({E}_{ext}\) on the SWCNT/Carboxyl structure leads to tighten its bandgap. The peaks of TDOS around the Fermi level are very weak. The absorption coefficient increases in visible range and decreases in ultraviolet (UV) domain proportionally with the \({E}_{ext}\). It is found that electronic structures and optical properties of the SWCNT/Carboxyl could be affected by the \({E}_{ext}\). All these results provide the important information for understanding and controlling the electronic and optical properties of 1D crystals by the \({E}_{ext}\). This study establishes a theoretical foundation for our future experimental work regarding optoelectronic properties of the SWCNT/Carboxyl material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

We have used CASTEP code by OTFG ultrasoft pseudopotentials (Material Studio).

References

  1. V. Lukose, R. Shankar, G. Baskaran, Novel electric field effects on landau levels in graphene, Phys. Rev. Lett. 98 (2007). https://doi.org/10.1103/PhysRevLett.98.116802.

  2. Y. Yao, F. Ye, X.L. Qi, S.C. Zhang, Z. Fang, Spin-orbit gap of graphene: first-principles calculations, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1–4. https://doi.org/10.1103/PhysRevB.75.041401.

  3. Balu R, Zhong X, Pandey R, Karna SP (2012) Effect of electric field on the band structure of graphene/boron nitride and boron nitride/boron nitride bilayers. Appl Phys Lett 100:3–6. https://doi.org/10.1063/1.3679174

    Article  CAS  Google Scholar 

  4. H. Mehrez, A. Svizhenko, M.P. Anantram, M. Elstner, T. Frauenheim, Analysis of band-gap formation in squashed armchair carbon nanotubes, Phys. Rev. B - Condens. Matter Mater. Phys. 71 (2005) 1–7. https://doi.org/10.1103/PhysRevB.71.155421.

  5. Orellana W, Fuentealba P (2006) Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes. Surf Sci 600:4305–4309. https://doi.org/10.1016/j.susc.2006.01.158

    Article  CAS  Google Scholar 

  6. Prabhu S, Bhaumik S, Vinayagam BK (2012) Finite element modeling and analysis of zigzag and armchair type single wall carbon nanotube. J Mech Eng Res 4:260–266. https://doi.org/10.5897/JMER12.025

    Article  Google Scholar 

  7. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Reports 43:61–102. https://doi.org/10.1016/j.mser.2003.10.001

    Article  CAS  Google Scholar 

  8. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon N Y 33:883–891. https://doi.org/10.1016/0008-6223(95)00017-8

    Article  CAS  Google Scholar 

  9. Yoosefian M, Etminan N (2016) Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube. Phys E Low-Dimensional Syst Nanostructures 81:116–121. https://doi.org/10.1016/j.physe.2016.03.009

    Article  CAS  Google Scholar 

  10. Chełmecka E, Pasterny K, Kupka T, Stobiński L (2012) DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes. J Mol Model 18:2241–2246. https://doi.org/10.1007/s00894-011-1242-x

    Article  CAS  PubMed  Google Scholar 

  11. M.H. Majles Ara, Z. Dehghani, Improvement of the third order nonlinear optical properties of nematic liquid crystal under the influence of different compositional percentage of doped SWCNT and the external electric field, J. Mol. Liq. 275 (2019) 281–289. https://doi.org/10.1016/j.molliq.2018.11.069.

  12. D. Singh, U. Bahadur Singh, M. Bhushan Pandey, R. Dabrowski, R. Dhar, Improvement of orientational order and display parameters of liquid crystalline material dispersed with single-wall carbon nanotubes, Mater. Lett. 216 (2018) 5–7. https://doi.org/10.1016/j.matlet.2017.12.099.

  13. T. yu Tang, Y. Liu, X. feng Diao, Y. lin Tang, Study on conductivity properties and stability of NbAs based on first-principles, Comput. Mater. Sci. 181 (2020) 109731. https://doi.org/10.1016/j.commatsci.2020.109731.

  14. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  15. E.R. McNellis, J. Meyer, K. Reuter, Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions, Phys. Rev. B - Condens. Matter Mater. Phys. 80 (2009). https://doi.org/10.1103/PhysRevB.80.205414.

  16. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  17. Matsuda Y, Tahir-Kheli J, Goddard WA (2010) Definitive band gaps for single-wall carbon nanotubes. J Phys Chem Lett 1:2946–2950. https://doi.org/10.1021/jz100889u

    Article  CAS  Google Scholar 

  18. V. Zólyomi, J. Kürti, First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004) 1–8. https://doi.org/10.1103/PhysRevB.70.085403.

  19. Hendrik J Monkhorst, J.D. Pack, Special points for Brillouin-zone integration Monkhorst and Pack, Phys. Rev. B. 13 (1976) 5188–5192. http://prb.aps.org/pdf/PRB/v13/i12/p5188_1.

  20. Kim DH, Ehrenreich H, Runge E (1994) Solid State Commun 89:119

    Article  CAS  Google Scholar 

  21. Lashgari H, Boochani A, Shekaari A, Solaymani S (2016) Applied Surface Science Electronic and optical properties of 2D graphene-like ZnS : DFT calculations. Appl Surf Sci 369:76–81. https://doi.org/10.1016/j.apsusc.2016.02.042

    Article  CAS  Google Scholar 

  22. Gravier P, Sigrist M, Chassaing G (1977) Détermination de la conductivité optique de couches minces semi-transparentes. Opt Acta (Lond) 24:733–741. https://doi.org/10.1080/713819628

    Article  CAS  Google Scholar 

  23. E.A. Taft, H.R. Philipp, Optical properties of graphite, Phys. Rev. 138 (1965). https://doi.org/10.1103/PhysRev.138.A197.

Download references

Acknowledgements

In conclusion, the authors sincerely thank all that contributed to this scientific work and particularly UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa, and Sultan Moulay Slimane University Beni Mellal Morocco.

Author information

Authors and Affiliations

Authors

Contributions

The authors have approved the manuscript and agree with submission to your esteemed journal. All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Omar Bajjou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajjou, O., Najim, A., Rahmani, K. et al. First-principles study on electronic and optical properties of single-walled carbon nanotube under an external electric field. J Mol Model 28, 97 (2022). https://doi.org/10.1007/s00894-022-05090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05090-2

Keywords

Navigation