Skip to main content
Log in

Molecular docking studies of natural immunomodulators indicate their interactions with the CD40L of CD40/CD40L pathway and CSF1R kinase domain of microglia

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Natural products have proved beneficial in reducing neuroinflammation in neurological diseases. Their impacts have also been associated with the activities of microglia, responsible for brain-specific immunity. Recent studies have shown the involvement of the number of microglia-specific proteins in the regulation of brain-specific immunity. However, molecular targets of natural products and their mechanism of interaction with microglia-specific proteins are elusive. Since the genetic signature of microglia offers many potential targets for drug discovery, molecular docking followed by molecular dynamics (MD) simulations of cluster of differentiation 40 ligand (CD40L) and colony-stimulating factor 1 receptor (CSF1R) kinase domain protein with some known neuro-immunomodulators (Curcumin, Cannabidiol, Ginsenoside Rg1, Resveratrol, and Sulforaphane) has been evaluated. Curcumin and cannabidiol were observed likely to modulate CD40L and expression of cytokines and entry of inflammatory cells. Resveratrol and cannabidiol may affect the CSF1R kinase domain and activation of microglia. Our finding suggests that curcumin, cannabidiol, and resveratrol may serve specific drug ligands in regulating microglia-mediated brain immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Choi DK, Koppula S, Suk K (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16:1021–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva AR, Grosso C, Delerue-Matos C, Rocha JM (2019) Comprehensive review on the interaction between natural compounds and brain receptors: benefits and toxicity. Eur J Med Chem 174:87–115

    Article  CAS  PubMed  Google Scholar 

  3. Jin X et al (2019) Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol Res 145:104253

    Article  CAS  PubMed  Google Scholar 

  4. Maurya SK et al (2021) Microglia specific drug targeting using natural products for the regulation of redox imbalance in neurodegeneration. Front Pharmacol 12:654489

  5. Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347

    Article  CAS  PubMed  Google Scholar 

  6. Paolicelli RC et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  7. Pont-Lezica L, Béchade C, Belarif-Cantaut Y, Pascual O, Bessis A (2011) Physiological roles of microglia during development. J Neurochem 119:901–908

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202

    Article  CAS  PubMed  Google Scholar 

  9. London A, Cohen M, Schwartz M (2013) Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Squarzoni P et al (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279

    Article  CAS  PubMed  Google Scholar 

  13. Wohleb ES (2016) Neuron-microglia interactions in mental health disorders: “for better, and for worse.” Front Immunol 7:544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. D’Aversa TG, Eugenin EA, Berman JW (2008) CD40-CD40 ligand interactions in human microglia induce CXCL8 (interleukin-8) secretion by a mechanism dependent on activation of ERK1/2 and nuclear translocation of nuclear factor-kappa B (NF kappa B) and activator protein-1 (AP-1). J Neurosci Res 86:630–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daoussis D, Andonopoulos AP, Liossis SN (2004) Targeting CD40L: a promising therapeutic approach. Clin Diagn Lab Immunol 11:635–641

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H (2021) Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 219:107709

    Article  CAS  PubMed  Google Scholar 

  17. Hagan N et al (2020) CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis 11:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sosna J et al (2018) Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener 13:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Spangenberg E et al (2019) Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 10:3758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mancuso R et al (2019) CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 142:3243–3264

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V (2012) Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics 13(Suppl 17):S7. https://doi.org/10.1186/1471-2105-13-S17-S7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng F, Li W, Zhou Y et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–3105. https://doi.org/10.1021/ci300367a (PMID: 23092397)

    Article  CAS  PubMed  Google Scholar 

  24. Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M (2012) Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 52:360–372

    Article  CAS  PubMed  Google Scholar 

  25. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  27. Adasme MF et al. (2021) PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49(W1):W530–W534

  28. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466. https://doi.org/10.1021/ct900549r

    Article  CAS  PubMed  Google Scholar 

  29. Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  PubMed  CAS  Google Scholar 

  30. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  Google Scholar 

  31. Azam SS, Abbasi SW (2013) Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model 10:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Villar HO, Kauvar LM (1994) Amino acid preferences at protein binding sites. FEBS Lett 349:125–130

    Article  CAS  PubMed  Google Scholar 

  33. Drew ED, Janes RW (2020) Identification of a druggable binding pocket in the spike protein reveals a key site for existing drugs potentially capable of combating Covid-19 infectivity. BMC Mol Cell Biol 21:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pantsar T, Poso A (2018) Binding affinity via docking: fact and fiction. Molecules 23:1899

    Article  PubMed Central  CAS  Google Scholar 

  35. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2013) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  PubMed  CAS  Google Scholar 

  36. Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11(2):184–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berezhkovskiy LM (2007) On the calculation of the concentration dependence of drug binding to plasma proteins with multiple binding sites of different affinities: determination of the possible variation of the unbound drug fraction and calculation of the number of binding sites of the protein. J Pharm Sci 96(2):249–257

    Article  CAS  PubMed  Google Scholar 

  38. Karpusas M, Hsu YM, Wang JH, Thompson J, Lederman S, Chess L, Thomas D (1995) 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure 3(10):1031–1039

    Article  CAS  PubMed  Google Scholar 

  39. Singh J, Garber E, Van Vlijmen H, Karpusas M, Hsu YM, Zheng Z, Naismith JH, Thomas D (1998) The role of polar interactions in the molecular recognition of CD40L with its receptor CD40. Protein Sci 7(5):1124–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. An HJ, Kim YJ, Song DH, Park BS, Kim HM, Lee JD, Paik SG, Lee JO, Lee H (2011) Crystallographic and mutational analysis of the CD40-CD154 complex and its implications for receptor activation. J Biol Chem 286(13):11226–11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sui Z et al (2007) Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation: implications in HIV type 1 dementia. J Immunol 178:3226–3236

    Article  CAS  PubMed  Google Scholar 

  42. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  CAS  PubMed  Google Scholar 

  43. Karnell JL, Rieder SA, Ettinger R, Kolbeck R (2019) Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 141:92–103

    Article  CAS  PubMed  Google Scholar 

  44. Michell-Robinson MA et al (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain 138:1138–1159

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oosterhof N et al (2018) Colony-stimulating factor 1 receptor CSF1R regulates microglia density and distribution but not microglia differentiation in vivo. Cell Rep 24:1203–1217

    Article  CAS  PubMed  Google Scholar 

  46. Martin-Estebane M, Gomez-Nicola D (2020) Targeting microglial population dynamics in Alzheimer’s disease: are we ready for a potential impact on immune function? Front Cell Neurosci 14:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marzan DE, Brügger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL (2021) Activated microglia drive demyelination via CSF1R signaling. Glia 69:1583–1604

    Article  CAS  PubMed  Google Scholar 

  48. Goldberg FW, Finlay M, Ting A, Beattie D, Lamont GM, Fallan C, Wrigley GL, Schimpl M, Howard MR, Williamson B, Vazquez-Chantada M, Barratt DG, Davies BR, Cadogan EB, Ramos-Montoya A, Dean E (2020) The discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5-a]pyridin-6-yl)amino]-9-(tetrahydro-2H-pyran-4-yl)-7,9-dihydro-8H-purin-8-one (AZD7648), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor. J Med Chem 63(7):3461–3471

    Article  CAS  PubMed  Google Scholar 

  49. Mohammad T, Siddiqui S, Shamsi A, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI (2020) Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: combined molecular docking and simulation studies. Molecules 25(4):823

    Article  CAS  PubMed Central  Google Scholar 

  50. Zhao Y, Zeng C, Massiah MA (2015) Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PloS one 10(4):e0124377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yeni Y, Supandi S, Dwita LP, Suswandari S, Shaharun MS, Sambudi NS (2020) Docking studies and molecular dynamics simulation of Ipomoea batatas L. leaves compounds as lipoxygenase (LOX) inhibitor. J Pharm Bioallied Sci 12(Suppl 2):S836–S840

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lokhande KB, Doiphode S, Vyas R, Swamy KV (2021) Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals mitoxantrone, leucovorin, birinapant, and dynasore as potent drugs against COVID-19. J Biomol Struct Dyn 39(18):7294–7305

    Article  CAS  PubMed  Google Scholar 

  53. Siraj MA, Rahman MS, Tan GT, Seidel V (2021) Molecular docking and molecular dynamics simulation studies of triterpenes from Vernonia patula with the cannabinoid type 1 receptor. Int J Mol Sci 22(7):3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anwar S, Mohammad T, Shamsi A, Queen A, Parveen S, Luqman S, Hasan GM, Alamry KA, Azum N, Asiri AM, Hassan MI (2020) Discovery of hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: implication in lung cancer therapy. Biomedicines 8(5):119

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

SKM acknowledges Ramjas College, University of Delhi, Delhi for its continuous support and motivation.

Author information

Authors and Affiliations

Authors

Contributions

SKM and RM conceptualized the manuscript. SKM performed the experiments and wrote the initial draft of the manuscript. RM supervised the study, reviewed, and edited the manuscript. All the authors approved the manuscript before submission.

Corresponding author

Correspondence to Rajnikant Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Mishra, R. Molecular docking studies of natural immunomodulators indicate their interactions with the CD40L of CD40/CD40L pathway and CSF1R kinase domain of microglia. J Mol Model 28, 101 (2022). https://doi.org/10.1007/s00894-022-05084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05084-0

Keywords

Navigation