Skip to main content
Log in

Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The work is devoted to computer studies of the structural and physical properties of such self-organizing structures as peptide nanotubes (PNT) based on diphenylalanine (FF) dipeptide with different initial isomers of the left (L-FF) and right (D-FF) chiralities of these dipeptides. The structures under study are considered both with empty anhydrous and with internal cavities filled with water molecules. Molecular models of both chiralities are investigated using quantum-chemical DFT and semi-empirical methods, which are in consistent with the known experimental data. To study the effect of nano-sized clusters of water molecules embedded in the inner hydrophilic cavity on the properties of nanotubes (including the changes in their dipole moments and polarizations), as well as the changes in the structure and properties of water clusters themselves (their own dipole moments and polarizations), the surfaces of internal cavities of nanotubes and outer surfaces of water cluster structures for both types of chirality are analyzed. A specially developed method of visual differential analysis of structural features of (bio)macromolecular structures is applied for these studies. The results obtained of a number of physical properties (interacting energies, dipole moments, polarization values) are given for various cases and analyzed in comparison with the known data. These data are necessary for analyzing the interactions of water molecules with hydrophilic parts of nanotube molecules based on FF, such as COO- and NH3 + , since they determine many properties of the structures under study. The data obtained are useful for further analysis of the possible adhesion and capture of medical molecular components by active layers of FF-based PNT, which can be designed for creating capsules for targeted delivery of pharmaceuticals and drugs on their basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright © 2020, Springer Nature)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References s

  1. Calvin M (1969) Chemical evolution. Molecular evolution, towards the origin of living system on the Earth and elsewhere. Claredon, Oxford

  2. Lehninger AL (1972) Biochemistry. The molecular basis of cell structure and function. Worth, New York

    Google Scholar 

  3. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752

    Article  CAS  Google Scholar 

  4. Pachahara SK, Subbalakshmi C, Nagaraj R (2017) Formation of nanostructures by peptides. Curr Protein Pept Sci 18(2):1–19

    Google Scholar 

  5. Aryaa SK, Solankia PR, Dattab M, Malhotra BD (2009) Recent advances in self- assembled monolayers based biomolecular electronic devices. J Biosens Bioelectron 24(9):2810–2817

    Article  Google Scholar 

  6. Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(6):582–612

    Article  CAS  Google Scholar 

  7. Sharma PP, Rathi B, Rodrigues J (2015) Self-assembled peptide nanoarchitectures: applications and future aspects. Curr Top Med Chem 15:1268–1289. https://doi.org/10.2174/1568026615666150408105711

    Article  CAS  PubMed  Google Scholar 

  8. Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers 10:235. https://doi.org/10.3390/polym10030235

    Article  CAS  PubMed Central  Google Scholar 

  9. Pauling L, Corey RB (1951) Configurations of polypeptide chains with favored orientations around single bonds. PNAS 37(11):729–740. https://doi.org/10.1073/pnas.37.11.729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cantor ChR, Schimel PR (1980) Biophysical chemistry. Part 3 The behavior of biological molecules. W.H, San Francisco

    Google Scholar 

  11. Tverdislov VA (2013) Chirality as a primary switch of hierarchical levels in molecular biological systems. Biophysics 58(1):128–132. https://doi.org/10.1134/S0006350913010156

    Article  CAS  Google Scholar 

  12. Tverdislov VA, Malyshko EV (2019) On regularities in the spontaneous formation of structural hierarchies in chiral systems of nonliving and living matter. Phys Usp 62(4):354–363. https://doi.org/10.3367/UFNe.2018.08.038401

    Article  CAS  Google Scholar 

  13. Bystrov VS, Zelenovskiy PS, Nuraeva AS, Kopyl S, Zhulyabina OA, Tverdislov VA (2019) Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes:modeling of structure and properties. Math Biol Bioinforma 14(1):94–124. https://doi.org/10.17537/2019.14

    Article  CAS  Google Scholar 

  14. Mason SF (1984) Origins of biomolecular handedness. Nature 311:19–23

    Article  CAS  Google Scholar 

  15. Chirality and Biological Activity (1990) Eds. Holmstedt B, Frank H, Testa B. Liss, New York

  16. Tishkov VI (2002) Regeneration of cofactors in chiral biosynthesis compounds using degydrogenases. Moscow University Bulletin. Series 2, Chemistry 43 (6):381–388. (in Russian)

  17. Semenova EV, Malyshko EV, Tverdislov VA (2019) On the possible interrelation of the chirality of drugs and chiral structures in target biomacromolecules. Actual Issues Biol Phys Chemi 4(3):346–351 ((in Russian))

    Google Scholar 

  18. Beloglazova IB, Plekhanova OS, Katkova EV et al (2015) Molecular modeling as a new approach to the development of urokinase inhibitors. Bull Exp Biol Med 158(5):700–704. https://doi.org/10.1007/s10517-015-2839-3

    Article  CAS  PubMed  Google Scholar 

  19. Sulimov AV, Kutov DC, Taschilova AS et al (2020) In search of non-covalent inhibitors of SARS-CoV-2 main protease: computer aided drug design using docking and quantum chemistry. Supercomput Front Innov, SsS 7(3):41–56. https://doi.org/10.14529/jsfi200305

    Article  Google Scholar 

  20. Orsi M (2018) Molecular simulation of self-assembly. In: Helena S. Azevedo and Ricardo M.P. da Silva (eds) Self-assembling Biomaterials. 1st Edition. Molecular design, characterization and application in biology and medicine. Woodhead Publishing Series in Biomaterials, Elsevier Ltd., pp. 305–318

  21. Lee OS, Stupp SI, Schatz GC (2011) Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J Am Chem Soc 133(10):3677–3683

    Article  CAS  Google Scholar 

  22. Frith WJ (2016) Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective). Philos Trans A 374 (2072):2015–0138. https://doi.org/10.1098/rsta.2015.0138

  23. Brandon CJ, Martin BP, McGee KJ, Stewart JJP, Braun-Sand SB (2015) An approach to creating a more realistic working model from a protein data bank entry. J Mol Mod 21(1):11

    Article  Google Scholar 

  24. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Hazanovich N (1993) Self assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–332

    Article  CAS  Google Scholar 

  25. Görbitz CH (2001) Nanotube formation by hydrophobic dipeptides. Chem Eur J 7:5153–5159

    Article  Google Scholar 

  26. Görbitz CH (2018) Hydrophobic dipeptides: the final piece in the puzzle. Acta Cryst B74:311–318

    Google Scholar 

  27. Bystrov V (2020) Computer simulation nanostructures: bioferroelectric amino acids. Bioferroelectricity: Peptide nanotubes and thymine nucleobase. LAP LAMBERT Academic Publishing

  28. Bystrov VS, Bdikin IK, Singh B (2020) Piezoelectric and ferroelectric properties of various amino acids and tubular dipeptide nanostructures: molecular modelling. Nanomater Sci Eng 2(1):11–24. https://doi.org/10.34624/nmse.v2i1.8259

    Article  Google Scholar 

  29. Sedman VL, Adler-Abramovich L, Allen S, Gazit E, Tendler SJB (2006) Direct observation of the release of phenylalanine from diphenilalanine nanotubes. J Am Chem Soc 128:6903–6908

    Article  CAS  Google Scholar 

  30. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    Article  CAS  Google Scholar 

  31. Shklovsky J, Beker P, Amdursky N, Gazit E, Rosenman G (2010) Bioinspired peptide nanotubes: deposition technology and physical properties. Mater Sci Eng B169:62–66

    Article  Google Scholar 

  32. Bystrov VS, Bdikin I, Heredia A, Pullar RC, Mishina E, Sigov A, Kholkin AL (2012) Piezoelectricity and Ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Ciofani G, Menciassi A (eds) Piezoelectric nanomaterials for biomedical applications. Springer, Berlin, pp 187–211

    Chapter  Google Scholar 

  33. Bystrov VS, Seyedhosseini E, Kopyl S, Bdikin IK, Kholkin AL (2014) Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements. J Appl Phys 116(6):066803. https://doi.org/10.1063/1.4891443

    Article  CAS  Google Scholar 

  34. Bystrov VS (2016) Computer simulation nanostructures: bioferroelectric peptide nanotubes. LAP Lambert Academic Press, Saarbruecken

  35. Bystrov VS, Paramonova EV, Bdikin IK, Kopyl S, Heredia A, Pullar RC, Kholkin AL (2012) Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics 440(1):3–24

    Article  CAS  Google Scholar 

  36. Nuraeva A, Vasilev S, Vasileva D, Zelenovskiy P, Chezganov D, Esin A, Kopyl S, Romanyuk K, Shur VYA, Kholkin AL (2016) Evaporation-driven crystallization of diphenylalanine microtubes for microelectronic applications. Cryst Growth Des 16:1472–1479

    Article  CAS  Google Scholar 

  37. Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotech 1:195–200

    Article  CAS  Google Scholar 

  38. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological application. Chem Soc Rev 43:6881–6893

    Article  CAS  Google Scholar 

  39. Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rozenman G (2009) Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett 9(9):3111–3115

    Article  CAS  Google Scholar 

  40. Zelenovskiy P, Kornev I, Vasilev S, Kholkin A (2016) On the origin of the great rigidity of self-assembled diphenylalanine nanotubes. Phys Chem Chem Phys 18(43):29681–29685

    Article  CAS  Google Scholar 

  41. Zelenovskiy PS, Nuraeva AS, Kopyl S, Arkhipov SG, Vasilev SG, Bystrov VS, Gruzdev DA, Waliszek M, Svitlyk V, Shur VYA, Marfa L, Kholkin AL (2019) Chirality-dependent growth of self-assembled diphenylalanine microtubes. Cryst Growth Des 19:6414–6421. https://doi.org/10.1021/acs.cgd.9b00884

    Article  CAS  Google Scholar 

  42. Bystrov VS, Kopyl SA, Zelenovskiy P, Zhulyabina OA, Tverdislov VA, Salehli F, Ghermani NE, Shur VYA, Kholkin AL (2018) Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules. Ferroelectrics 525:168–177. https://doi.org/10.1080/00150193.2018.14328

    Article  CAS  Google Scholar 

  43. Bystrov VS, Zelenovskiy PS, Nuraeva AS, Kopyl S, Zhulyabina OA, Tverdislov VA (2019) Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes. J Mol Model 25:199. https://doi.org/10.1007/s00894-019-4080-x

    Article  CAS  PubMed  Google Scholar 

  44. Bystrov VS, Coutinho J, Zelenovskiy PS, Nuraeva AS, Kopyl S, Filippov SV, Zhulyabina OA, Tverdislov VA (2020) Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules. J Mol Model 26(11):326. https://doi.org/10.1007/s00894-020-04564-5

    Article  CAS  PubMed  Google Scholar 

  45. Bystrov V, Coutinho J, Zelenovskiy P, Nuraeva A, Kopyl S, Zhulyabina O, Tverdislov V (2020) Structures and properties of the self-assembling diphenylalanine peptide nanotubes containing water molecules: modeling and data analysis. Nanomaterials 10(10):1999. https://doi.org/10.3390/nano10101999

    Article  CAS  PubMed Central  Google Scholar 

  46. Bystrov VS, Coutinho J, Zhulyabina OA, Kopyl SA, Zelenovskiy PS, Nuraeva AS, Tverdislov VA, Filippov SV, Kholkin AL, Shur VYA (2021) Modelling and physical properties of diphenylalanine peptide nanotubes containing water molecules. Ferroelectrics 574:78–91. https://doi.org/10.1080/00150193.2021.1888051

    Article  CAS  Google Scholar 

  47. Emtiazi G, Zohrabi T, Lee LY, Habibi N, Zarrabi A (2017) Covalent diphenylalanine peptide nanotube conjugated to folic acid/magnetic nanoparticles for anti-cancer drug delivery. J Drug Deliv Sci Technol 41:90–98. https://doi.org/10.1016/j.jddst.2017.06.005

    Article  CAS  Google Scholar 

  48. Silva RF, Araújo DR, Silva ER, Ando RA, Alves WA (2013) L-Diphenylalanine microtubes as a potential drug-delivery system: characterization, release kinetics, and cytotoxicity. Langmuir 29:10205–10212. https://doi.org/10.1021/la4019162

    Article  CAS  PubMed  Google Scholar 

  49. Filippov SV, Bystrov VS (2020) A visual differential analysis of structural features of internal cavities in two chiral forms of diphenylalanine nanotubes. Biophysics 65(3):374–380. https://doi.org/10.1134/S0006350920030057

    Article  CAS  Google Scholar 

  50. Filippov SV, Likhachev IV, Bystrov VS (2020) Visual-differential analysis of structural realignations water clusters in the domain of the D-FF nanotubes. Russ J Biol Phys Chem 5(3):415–423

    Google Scholar 

  51. Bystrov VS, Filippov SV, Zhulyabina OA, Tverdislov VA (2020) Molecular modeling of the structure and properties of diphenylalanine peptide nanotubes of different chirality containing water molecules. Russ J Biol Phys Chem 5(2):261–268

    Google Scholar 

  52. The Cambridge Crystallographic Data Centre (CCDC). https://www.ccdc.cam.ac.uk/ (accessed July 2018–May 2020) Crystallographic data for D-FF nanotubes structure reported in [41, 43] have been deposited in the Cambridge Crystallographic Cambridge Crystallographic Data Centre, no. CCDC 1853771. For L-FF crystallographic data no. CCDC 16337 was deposited earlier (as reported in [25])

  53. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  54. VASP (Vienna Ab initio Simulation Package). https://www.vasp.at/ (Accessed July 2019–May 2020)

  55. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  56. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter Mater Phys 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  57. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B: Condens Matter Mater Phys 59:1758–1775

    Article  CAS  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  59. Paier J, Hirschl R, Marsman M, Kresse G (2005) The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2–1 test set using a plane-wave basis set. J Chem Phys 122:234102

    Article  Google Scholar 

  60. Grimme S, Antony J, Ehrlich S, Krieg S (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  61. Stewart JJP (1989) Optimization of parameters for semiempirical methods. I Method J Comput Chem 10:209

    Article  CAS  Google Scholar 

  62. Stewart JJP (1989) Optimization of parameters for semiempirical methods II. Applications. J Comput Chem 10:221

    Article  CAS  Google Scholar 

  63. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Mod 13(12):1173–1213

    Article  CAS  Google Scholar 

  64. Rocha GB, Freire RO, Simas AM, Stewart JJP (2006) RM1: a Reparameterization of AM1 for Y, C, N, O, P, S, F, Cl, Br, and I. J Comp Chem 27(10):1101–1111

    Article  CAS  Google Scholar 

  65. Lima NBD, Rocha GB, Freire RO, Simas AM (2019) RM1 semiempirical model: chemistry, pharmaceutical research, molecular biology and materials science. J Braz Chem Soc 30(4):683–716. https://doi.org/10.21577/0103-5053.20180239

  66. Hypercube Inc (2011) HyperChem 8. Tools for Molecular Modeling. Professional Edition For Windows AC Release 8.0 USB (on CD). Hypercube Inc., Gainesville

  67. Novotny M, Kleywegt GJ (2005) A survey of left-handed helices in protein structures. J Mol Biol 347(2):231–410. https://doi.org/10.1016/j.jmb.2005.01.037

    Article  CAS  PubMed  Google Scholar 

  68. Gremer L, et al. (2017) Fibril structure of amyloid-b(1–42) by cryo–electron microscopy. Science 358:116–119. http://science.sciencemag.org/content/358/6359/116

  69. Andrade-Filho T, Martins TC, Ferreira FF, Alves WA, Rocha AR (2016) Water-driven stabilization of diphenylalanine nanotube structures. Theor Chem Acc 135:185. https://doi.org/10.1007/s00214-016-1936-3

    Article  CAS  Google Scholar 

  70. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blender is the free and open source 3D creation suite. It supports the entirety of the 3D pipeline —modeling, rigging, animation, simulation, rendering, compositing and motion tracking, even video editing and game creation. https://www.blender.org (accessed 05.04.2021)

  72. Filippov SV, Sivozhelezov VS (2018) Method of constructing dynamic molecular models within the environment of the Blender open 3D platform exemplified by β2-adrenergic receptor. In: Lakhno VD (eds) Proceedings of the International Conference “Mathematical Biology and Bioinformatics”. Vol. 7. IMPB RAS, Pushchino; paper No. e45. https://doi.org/10.17537/icmbb18.23

  73. Filippov SV (2018) Methods of working with dynamic molecular models, built in an environment of open 3D editor Blender. In: Lakhno VD (eds) Proceedings of the International Conference “Mathematical Biology and Bioinformatics”. Vol. 7. IMPB RAS, Pushchino; paper No. e43. https://doi.org/10.17537/icmbb18.62

  74. Filippov SV (2019) Visualization of macromolecules in 3D-editors: a method for identifying atoms on images. In: Proceedings of the International Conference after A.F. Terpugov (June, 26–30, Saratov, Russia): Information Technologies and Mathematical modelling (ITMM-2019). Publishing Sci.-Techn.Lit., Tomsk, Vol.1, pp.169–174 (in Russian)

  75. Filippov SV, Polozov RV, Sivozhelezov VS (2019) Visualization of spatial structures of (bio) macromolecules: “hypsometric” maps construction. In: Proceedings of the International Conference after A.F. Terpugov (June, 26–30, Saratov, Russia): information technologies and mathematical modelling (ITMM-2019). Publishing Sci.-Techn.Lit., Tomsk, Vol.1, pp.163–168 (in Russian)

  76. Filippov SV, Polozov RV, Sivozhelezov VS (2019) Hypsometric mapping based visualization of (bio)macromolecular 3D structures. KIAM Preprint 61, Moscow, 2019. pages 14. https://doi.org/10.20948/prepr-2019-61. URL: http://library.keldysh.ru/preprint.asp?id=2019-61 (in Russian)

  77. Filippov SV, Polozov RV, Sivozhelezov VS (2019) “Hypsometric” maps of spatial molecular structures. In: Abstracts of International Conference «Advanced Mathematics, Computations and Applications 2019» (AMCA-2019), (July, 1–5, Novosibirsk, Russia). IPC NSU, Novosibirsk, 167 pages. https://doi.org/10.24411/9999-017A-2019-10324 (in Russian)

  78. Filippov SV (2019) Projection "hypsometric" maps of molecular structures, Blender 3D editor: Identification of atoms. In: Abstracts of International Conference «Advanced Mathematics,Computations and Applications 2019» (AMCA-2019), (July, 1–5, Novosibirsk, Russia). IPC NSU, Novosibirsk, 167 pages. https://doi.org/10.24411/9999-017A-2019-10323 (in Russian)

  79. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  80. LibreOffice. URL: https://www.libreoffice.org (Accessed 07.04.2021)

  81. Tschumperle D, Fourey S. G’MIC (GREYC’s Magic for Image Computing): a full-featured open-source framework for image processing. URL: https://gmic.eu (Accessed 07.04.2021)

  82. Photo Reactor is a Nodal Image Processor. URL: https://www.mediachance.com/reactor/index.html (Accessed 07.04.2021)

  83. Salehli F, Aydin AO, Chovan D, Kopyl S, Bystrov V, Thompson D, Tofail SAM, Kholkin A (2021) Nanoconfined water governs polarization-related properties of self-assembled peptide nanotubes. Nano Select 2:817–829. https://doi.org/10.1002/nano.202000220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to V.A. Tverdislov for fruitful discussions and support of this line of research. The authors are grateful to the University of Aveiro (UA, Faculty of Physics), Portugal, for the opportunity to use a multi-processor computer cluster for computational research on this study within the framework of non-commercial scientific agreement between IMPB RAS (the branch of KIAM RAS) and UA for the period 2017–2020 of our collaboration. In addition, the authors thank the Center for Collective Use of the Keldysh Institute of Applied Mathematics RAS for the possibility of the use of a hybrid supercomputer.

Author information

Authors and Affiliations

Authors

Contributions

V.B. wrote the manuscript and supervised this study. S.F. developed the method of the visual differential analysis and applied it to the FF nanotubes and water clusters.

Corresponding author

Correspondence to Vladimir S. Bystrov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystrov, V.S., Filippov, S.V. Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis. J Mol Model 28, 81 (2022). https://doi.org/10.1007/s00894-022-05074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05074-2

Keywords

Navigation