Skip to main content
Log in

DFT study on the synthesis of trifluoroacetophenone from palladium complex LnPd(Ph)CF3 (Ln = Xantphos or DtBPF) and CO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The carbonylative trifluoromethylation reaction mechanism of palladium complex LnPd(Ph)CF3 (Ln = Xantphos or DtBPF) and CO to synthesize trifluoroacetophenone was calculated using the density functional theory B3LYP method. In this paper, we conducted a computational study on the competition mechanism of two different products trifluorotoluene and trifluoroacetophenone. The calculation result reveals (1) CO insertion and reduction-elimination are two key steps in palladium-catalyzed reactions; (2) for the palladium complex (Xantphos)Pd(Ph)CF3, the resulting product trifluoroacetyl has a lower activation energy and higher reactivity; and (3) for the metal palladium ligand DtBPF, the small energy difference between the two products indicates that the stereoselectivity of the product is relatively poor. The computational research results in this paper provide a good supplement and effective explanation to the experimental phenomenon of Domino et al. (Organometallics 39:688–697, 2020).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

NA.

References

  1. Ritter T (2010) Catalysis: fluorination made easier. Nature 466:447–448

    Article  CAS  Google Scholar 

  2. Lundgren RJ, Stradiotto M (2010) Transition-metal-catalyzed trifluoromethylation of aryl halides. Angew Chem Int Ed 49:9322–9324

    Article  CAS  Google Scholar 

  3. Furuya T, Kamlet AS, Ritter T (2011) Catalysis for fluorination and trifluoromethylation. Nature 473:470–477

    Article  CAS  Google Scholar 

  4. Tomashenko OA, Grushin VV (2011) Aromatic trifluoromethylation with metal complexes. Chem Rev 111:4475–4521

    Article  CAS  Google Scholar 

  5. Alonso C, MartínezdeMarigorta E, Rubiales G, Palacios F (2015) Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem Rev 115:1847–1935

    Article  CAS  Google Scholar 

  6. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H (2016) Next generation of fluorine-containing pharmaceuticals, compounds currently on phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 116:422–518

    Article  CAS  Google Scholar 

  7. Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506

    Article  CAS  Google Scholar 

  8. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330

    Article  CAS  Google Scholar 

  9. Muller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Sci 317:1881–1886

    Article  Google Scholar 

  10. Oishi M, Kondo H, Amii H (2009) Aromatic trifluoromethylation catalytic in copper. Chem Commun 2009:1909–1911

    Article  Google Scholar 

  11. Knauber T, Arikan F, Roschenthaler GV, Gooßen LJ (2011) Copper-catalyzed trifluoromethylation of aryl iodides with potassium (trifluoromethyl)trimethoxyborate. Chem Eur J 17:2689–2697

    Article  CAS  Google Scholar 

  12. Zhao S, Guo Y, Han EJ, Luo J, Liu HM, Liu C, Xie W, Zhang W, Wang M (2018) Copper(II)-catalyzed trifluoromethylation of iodoarenes using Chen’s reagent. Org Chem Front 5:1143–1147

    Article  CAS  Google Scholar 

  13. Le C, Chen TQ, Liang T, Zhang P, MacMillan DWC (2018) A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Sci 360:1010–1014

    Article  CAS  Google Scholar 

  14. Samant BS, Kabalka GW (2011) A novel catalytic process for trifluoromethylation of bromoaromatic compounds. Chem Commun 47:7236–7238

    Article  CAS  Google Scholar 

  15. Martínez de Salinas S, Mudarra AL, Benet-Buchholz J, Parella T, Maseras F, Perez-Temprano MH (2018) New vistas in transmetalation with discrete “AgCF3” species: implications in Pd-mediated trifluoromethylation reactions. Chem Eur J 24:11895–11898

    Article  Google Scholar 

  16. Keaveney ST, Schoenebeck F (2018) Palladium-catalyzed decarbonylative trifluoromethylation of acid fluorides. Angew Chem Int Ed 57:4073–4077

    Article  CAS  Google Scholar 

  17. Ferguson DM, Bour JR, Canty AJ, Kampf JW, Sanford MS (2017) Stoichiometric and catalytic aryl-perfluoroalkyl coupling at tritert-butylphosphine palladium(II) complexes. J Am Chem Soc 139:11662–11665

    Article  CAS  Google Scholar 

  18. Ferguson DM, Bour JR, Canty AJ, Kampf JW, Sanford MS (2019) Aryl−CF3 coupling from phosphinoferrocene-ligated palladium(II) complexes. Organometallics 38:519–526

    Article  CAS  Google Scholar 

  19. Maleckis A, Sanford MS (2014) Catalytic cycle for palladium-catalyzed decarbonylative trifluoromethylation using trifluoroacetic esters as the CF3 source. Organometallics 33:2653–2660

    Article  CAS  Google Scholar 

  20. Grushin VV, Marshall WJ (2006) Facile Ar-CF3 bond formation at Pd. Strikingly different outcomes of reductive elimination from [(Ph3P)2Pd(CF3)Ph] and [(Xantphos)Pd(CF3)Ph]. J Am Chem Soc 128:12644–12645

    Article  CAS  Google Scholar 

  21. Nielsen MC, Bonney KJ, Schoenebeck F (2014) Computational ligand design for the reductive elimination of ArCF3 from a small biteangle Pd complex: remarkable effect of a perfluoroalkyl phosphine. Angew Chem Int Ed 53:5903–5906

    Article  CAS  Google Scholar 

  22. Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL (2010) The palladium-catalyzed trifluoromethylation of aryl chlorides. Sci 328:1679–1681

    Article  CAS  Google Scholar 

  23. Zhu F, Yang G, Zhou S, Wu XF (2016) Palladium-catalyzed carbonylative coupling of aryl iodides with an organocopper reagent: a straightforward procedure for the synthesis of aryl trifluoromethyl ketones. RSC Adv 6:57070–57074

    Article  CAS  Google Scholar 

  24. Domino K, Johansen MB, Daasbjerg K, Skrydstrup T (2020) Stoichiometric studies on the carbonylative trifluoromethylation of aryl Pd(II) complexes using TMSCF as the trifluoromethyl source. Organometallics 39:688–697

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford CT.

  26. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  28. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations, potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  30. Goerigkab L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  Google Scholar 

  31. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem 77:10824–10834

    Article  CAS  Google Scholar 

  32. Darù A, Hu XL, Harvey JN (2020) Iron-catalyzed reductive coupling of alkyl iodides with alkynes to yield cis-olefins: mechanistic insights from computation. ACS Omega 5:1586–1594

    Article  Google Scholar 

  33. Yang Y, Canty AJ, McKay AI, Donnelly PS, O’Hair RAJ (2020) Palladium-mediated CO2 extrusion followed by insertion of isocyanates for the synthesis of benzamides: translating fundamental mechanistic studies to develop a catalytic protocol. Organometallics 39:453–467

    Article  CAS  Google Scholar 

  34. Zhang XH, Li SS, Wei XL, Lei Y (2018) Computational study of Ru-catalyzed cycloisomerization of 2-alkynylanilides. J Mol Model 24:162

    Article  Google Scholar 

  35. Zhang XH, Wu X, Lei Y (2019) Theoretical study on reaction mechanism of synthesis of iridium complexes having cyclometalated acyclic diaminocarbene ancillary ligands. J Mol Model 25:262

    Article  Google Scholar 

  36. Shu C, Jiang ZM, Biczysko M (2020) Toward accurate prediction of amino acid derivatives structure and energetics from DFT: glycine conformers and their interconversions. J Mol Model 26:129

    Article  CAS  Google Scholar 

  37. Sabolović J, RamekM MM (2017) Calculating the geometry and Raman spectrum of physiological bis(L-histidinato)copper(II): an assessment of DFT functionals for aqueous and isolated systems. J Mol Model 23:290

    Article  Google Scholar 

  38. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  39. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B 115:14556–14562

    Article  CAS  Google Scholar 

  40. Legault CY (2009) CYLview, 1.0b. Université de Sherbrooke: Sherbrooke, Quebec, Canada. www.cylview.org.

Download references

Acknowledgements

We are grateful to the reviewers for their invaluable suggestions.

Funding

This work was supported by Natural Science Foundation of Gansu Province (20JR5RA479 of Prof. Xinghui Zhang) and the Outstanding Youth Research Program of Lanzhou University of Arts and Sciences (2021SZZX06 of Prof. Xinghui Zhang).

Author information

Authors and Affiliations

Authors

Contributions

XingHui Zhang: problem selection, writing, and data analysis.

Xi Wu: result analysis, manuscript editing.

HaiXiong Shi: simulations, analysis, manuscript first draft.

ZiYi Wang: methods, project management, result analysis, manuscript editing.

ShanShan Li: data analysis, writing.

Corresponding author

Correspondence to XingXui Zhang.

Ethics declarations

Ethics approval

NA.

Consent to participate

NA.

Consent for publication

Written informed consent for publication was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, X., Shi, H. et al. DFT study on the synthesis of trifluoroacetophenone from palladium complex LnPd(Ph)CF3 (Ln = Xantphos or DtBPF) and CO. J Mol Model 28, 48 (2022). https://doi.org/10.1007/s00894-022-05030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05030-0

Keywords

Navigation