Skip to main content
Log in

Comparison of green bio-based cerium/alginate vs. copper/alginate beads: a study of vibrational and thermal properties using experimental and theoretical methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Herein, bio-based alginates (Alg) containing metallic beads (Ce and Cu) were synthesized via an alginate cross-linking method, and their properties were studied using experimental techniques combined with theoretical simulations. Materials were characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) images, to determine the cross-linking structural features, thermal stability, and surface morphology of alginates. Besides, density functional theory (DFT) methods were employed to calculate global reactivity parameters such as HOMO–LUMO gap energies (ΔEH-L), electronegativity (χ), hardness (η), and electrophilic and nucleophilic indicators, using both gas and aqueous media for the study of the complexation process. Among other features, characterization of the thermal properties showed that Alg@Ce and Alg@Cu alginate beads behave differently as a function of the temperature. This behavior was also predicted by the conformation energy differences between Alg@Ce and Alg@Cu, which were found out theoretically and explained with the combined study of the vibrational modes between the carboxylate group with either Ce or Cu. Overall, the reactivity of the Alg@Ce alginate bead was higher than that of the Alg@Cu counterpart, results could be used as a cornerstone to employed the materials here studied in a wide range of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

All data underlying the results are available as part of the article and no additional source data are required. Software code and availability from https://gaussian.com/.

References

  1. Abdellaoui Y, Celaya CA, Elhoudi M et al (2022) Understanding of vibrational and thermal behavior of bio-based doped alginate@nickel cross-linked beads: a combined experimental and theoretical study. J Mol Struct 1249:131524. https://doi.org/10.1016/j.molstruc.2021.131524

    Article  CAS  Google Scholar 

  2. Abou Oualid H, Essamlali Y, Amadine O et al (2019) Green synthesis of Ag/ZnO nanohybrid using sodium alginate gelation method. RSC Adv 43:13786–13790

    Google Scholar 

  3. Abou Oualid H, Abdellaoui Y, Laabd M et al (2020) Eco-efficient green seaweed codium decorticatum biosorbent for textile dyes : characterization, mechanism, recyclability, and RSM optimization. ACS Omega. https://doi.org/10.1021/acsomega.0c02311

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agulhon P, Markova V, Robitzer M et al (2012) Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations. Biomacromol 13:1899–1907. https://doi.org/10.1021/bm300420z

    Article  CAS  Google Scholar 

  5. Banerjee S, Banerjee A, Sarkar P (2018) Toxic / hazardous substances and environmental engineering statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads. J Environ Sci Heal Part A 4529:. https://doi.org/10.1080/10934529.2017.1409009

  6. Barra I, Kharbach M, Bousrabat M et al (2020) Discrimination of diesel fuels marketed in Morocco using FTIR. GC-MS analysis and chemometrics methods Talanta 209:120543. https://doi.org/10.1016/j.talanta.2019.120543

    Article  CAS  PubMed  Google Scholar 

  7. Beatriz H, Peixoto T, Araújo D et al (2020) International Journal of Biological Macromolecules chitosan, alginate and other macromolecules as activated carbon immobilizing agents : a review on composite adsorbents for the removal of water contaminants. Int J Biol Macromol 164:2535–2549. https://doi.org/10.1016/j.ijbiomac.2020.08.118

    Article  CAS  Google Scholar 

  8. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  9. Belitz H-D, Grosch W, Schieberle P (2004) Food additives. In: Food chemistry. Springer, pp 434–473

  10. Bourzi H, Oukhrib R, Ibrahimi B El, et al (2020) Furfural analogs as sustainable corrosion inhibitors-predictive efficiency using DFT and monte carlo simulations on the Cu(111), Fe(110), Al(111) and Sn(111) surfaces in acid media. Sustain 12:. https://doi.org/10.3390/SU12083304

  11. Bourzi H, Oukhrib R, Ibrahimi B El, et al (2020) Understanding of anti-corrosive behavior of some tetrazole derivatives in acidic medium: adsorption on Cu (111) surface using quantum chemical calculations and Monte Carlo simulations. Surf Sci 702:. https://doi.org/10.1016/j.susc.2020.121692

  12. Broido A, Forest PS, Station RE (1969) A simple , sensitive graphical method of treating thermogravimetric analysis data *. 1773:1761–1773

  13. Caldeweyher E, Bannwarth C, Grimme S (2017) Extension of the D3 dispersion coefficient model. J Chem Phys 147:034112. https://doi.org/10.1063/1.4993215

    Article  CAS  PubMed  Google Scholar 

  14. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to Isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  15. Chai LQ, Zhang XF, Tang LJ (2021) Crystallographic, spectroscopic, TD/DFT calculations and Hirshfeld surface analysis of cadmium(II) coordination polymer containing pyridine ring. J Mol Struct 1245:131028. https://doi.org/10.1016/j.molstruc.2021.131028

    Article  CAS  Google Scholar 

  16. Cimá-Mukul CA, Abdellaoui Y, Abatal M et al (2019) Eco-Efficient biosorbent based on leucaena leucocephala residues for the simultaneous removal of Pb(II) and Cd(II) ions from water system: sorption and mechanism. Bioinorg Chem Appl 2019:1–13. https://doi.org/10.1155/2019/2814047

    Article  CAS  Google Scholar 

  17. Chu KH (2004) Improved fixed bed models for metal biosorption. Chem Eng J 97:233–239. https://doi.org/10.1016/S1385-8947(03)00214-6

    Article  CAS  Google Scholar 

  18. Draget KI, Taylor C (2011) Food Hydrocolloids chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256. https://doi.org/10.1016/j.foodhyd.2009.10.007

    Article  CAS  Google Scholar 

  19. Draget KI Alginates. Handb Hydrocoll Work. https://doi.org/10.1533/9781845695873.807

  20. Dennington R, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS

  21. Elhoudi M, Aarab N, Laabd M (2021) Quantum chemical approach ( DFT ) of the binary complexation of Hg ( II ). 3:406–415

  22. Elhoudi M, Hsini A, El Houdi M et al (2021) A theoretical investigation of complexation for pyrimidine bases with Hg2+ and Cd2+ by DFT method. Nanotechnol Environ Eng 6:1–13. https://doi.org/10.1007/s41204-021-00128-x

    Article  CAS  Google Scholar 

  23. Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. 84:310–320. https://doi.org/10.1016/j.minpro.2006.07.018

  24. Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282. https://doi.org/10.1021/es950315s

    Article  CAS  Google Scholar 

  25. Gaussian09 RA (2009) 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc, Wallingford CT 121:150–166

  26. Goh CH, Wan P, Heng S, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12. https://doi.org/10.1016/j.carbpol.2011.11.012

    Article  CAS  Google Scholar 

  27. Gyu H, Won T, Yun M, Yoo I (2007) Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process Biochem 42:1371–1377. https://doi.org/10.1016/j.procbio.2007.06.016

    Article  CAS  Google Scholar 

  28. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    Article  CAS  Google Scholar 

  29. Hassan B, Rajan VK, Mujeeb VMA, Muraleedharan K (2017) A DFT based analysis of adsorption of Hg2+ion on chitosan monomer and its citralidene and salicylidene derivatives: prior to the removal of Hg toxicity. Int J Biol Macromol 99:549–554. https://doi.org/10.1016/j.ijbiomac.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  30. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  31. Jmiai A, El Ibrahimi B, Tara A et al (2018) Alginate biopolymer as green corrosion inhibitor for copper in 1 M hydrochloric acid: experimental and theoretical approaches. J Mol Struct 1157:408–417. https://doi.org/10.1016/j.molstruc.2017.12.060

    Article  CAS  Google Scholar 

  32. Kharbach M, Marmouzi I, Kamal R et al (2021) Extra virgin Argan oils’ shelf-life monitoring and prediction based on chemical properties or FTIR fingerprints and chemometrics. Food Control 121:107607. https://doi.org/10.1016/j.foodcont.2020.107607

    Article  CAS  Google Scholar 

  33. Kikuchi A, Okano T (2002) Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev 54:53–77. https://doi.org/10.1016/S0169-409X(01)00243-5

    Article  CAS  PubMed  Google Scholar 

  34. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  35. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  36. Larosa C, Salerno M, de Lima JS et al (2018) Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int J Biol Macromol 115:900–906. https://doi.org/10.1016/j.ijbiomac.2018.04.138

    Article  CAS  PubMed  Google Scholar 

  37. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications : an overview. Mar Drugs 8:2435–2465. https://doi.org/10.3390/md8092435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Zhao J-C, Zhang C-J et al (2015) Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior. RSC Adv 5:64125–64137. https://doi.org/10.1039/C5RA11048C

    Article  CAS  Google Scholar 

  39. Majidnia Z, Idris A (2014) Evaluation of cesium removal from radioactive waste water using. Chem Eng J. https://doi.org/10.1016/j.cej.2014.09.118

    Article  Google Scholar 

  40. McGoverin CM, Walsh TJ, Gordon KC et al (2007) Predicting nonlinear optical properties in push-pull molecules based on methyl pyridinium donor and 3-cyano-5,5-dimethyl-2(5H)-furanylidene-propanedinitrile acceptor units using vibrational spectroscopy and density functional theory. Chem Phys Lett 443:298–303. https://doi.org/10.1016/j.cplett.2007.06.068

    Article  CAS  Google Scholar 

  41. Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation morphology and antibacterial properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.02.068

    Article  PubMed  Google Scholar 

  42. Monakhova Y, Agulhon P, Quignard F et al (2012) New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route. Catal Today 189:28–34. https://doi.org/10.1016/j.cattod.2012.03.072

    Article  CAS  Google Scholar 

  43. (1991) Book review. 47:1991

  44. Oualid HA, Amadine O, Essamlali Y et al (2019) Highly efficient catalytic/sonocatalytic reduction of 4-nitrophenol and antibacterial activity through a bifunctional Ag/ZnO nanohybrid material prepared via a sodium alginate method. Nanoscale Adv 1:3151–3163. https://doi.org/10.1039/C9NA00075E

    Article  CAS  Google Scholar 

  45. Oualid HA, Amadine O, Essamlali Y, et al Supercritical CO 2 drying of alginate/zinc hydrogels: a green and facile route to prepare ZnO foam structures and ZnO nanoparticles. https://doi.org/10.1039/c8ra02129e

  46. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807. https://doi.org/10.1063/1.436185

    Article  CAS  Google Scholar 

  47. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  48. Parr RG, Yang W (1950) Density Functional theory of atoms and molecules.-Oxford University Press, 1989. Citado 2:19

  49. Pavelková M, Vysloužil J, Kubová K et al (2021) Assessment of antimicrobic, antivirotic and cytotoxic potential of alginate beads cross-linked by bivalent ions for vaginal administration. Pharmaceutics 13:1–20. https://doi.org/10.3390/pharmaceutics13020165

    Article  CAS  Google Scholar 

  50. Plazinski W (2013) Binding of heavy metals by algal biosorbents. Theoretical models of kinetics, equilibria and thermodynamics. Adv Colloid Interface Sci 197–198:58–67. https://doi.org/10.1016/j.cis.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  51. Prabhu AA, Chityala S, Jayachandran D et al (2020) A two step optimization approach for maximizing biosorption of hexavalent chromium ions ( Cr ( VI )) using alginate immobilized Sargassum sp in a packed bed column. Sep Sci Technol 00:1–17. https://doi.org/10.1080/01496395.2019.1708933

    Article  CAS  Google Scholar 

  52. Quignard F, Valentin R, Di Renzo F (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310. https://doi.org/10.1039/b808218a

    Article  CAS  Google Scholar 

  53. RachidOukhriba Hicham Abou Oualid, Youness Abdellaoui, Souad El Issami, LahcenBazzi, Mustapha Hilali, Hassan Bourzi BEI (2020) In silico investigations of alginate biopolymer on the Fe (110), Cu (111), Al (111) and Sn (001) surfaces in acidic media: Quantum chemical and molecular mechanic calculations. J Mol Liq

  54. Resmi R, Parvathy J, John A, Joseph R (2020) Injectable self-crosslinking hydrogels for meniscal repair : a study with oxidized alginate and gelatin. Carbohydr Polym 234:115902. https://doi.org/10.1016/j.carbpol.2020.115902

    Article  CAS  PubMed  Google Scholar 

  55. Rubab S, Anwaar M, Ekinci D et al (2020) International Journal of Biological Macromolecules Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery. Int J Biol Macromol 150:315–325. https://doi.org/10.1016/j.ijbiomac.2020.02.042

    Article  CAS  Google Scholar 

  56. Seal P, Jha PC, Chakrabarti S (2008) Static first order hyperpolarizabilities of DNA base pairs: a configuration interaction study. J Mol Struct THEOCHEM 855:64–68. https://doi.org/10.1016/j.theochem.2008.01.002

    Article  CAS  Google Scholar 

  57. Sprio S, Sandri M, Panseri S, et al (2014) Bone substitutes based on biomineralization. Woodhead Publishing Limited

  58. Varaprasad K, Jayaramudu T, Kanikireddy V et al (2020) Alginate-based composite materials for wound dressing application : a mini review. Carbohydr Polym 236:116025. https://doi.org/10.1016/j.carbpol.2020.116025

    Article  CAS  PubMed  Google Scholar 

  59. Winkleman A, Bracher PJ, Gitlin I, Whitesides GM (2007) Fabrication and manipulation of ionotropic hydrogels cross-linked by paramagnetic ions. Chem Mater 19:1362–1368. https://doi.org/10.1021/cm062626f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: formulation and evolution of overarching research goals an aims: Mohammed Elhoudi, Rachid Oukhrib, Christian A. Celaya, Youness Abdellaoui, and Hicham Abou Oualid.

Data curation: produce data, including software code use: Mohammed Elhoudi, Rachid Oukhrib, Christian A. Celaya, Miguel Reina.

Investigation: performing the experiments: Youness Abdellaoui, Issam Barra, Younes Brahmi, Hassan Bourzi.

Formal analysis: analyze study data: Mohammed Elhoudi, Rachid Oukhrib, Christian A. Celaya, Youness Abdellaoui, Issam Barra, Younes Brahmi, Hassan Bourzi.

Project administration: management and coordination responsibility for the research activity planning and execution:Youness Abdellaoui, Hicham Abou Oualid.

Resources: provision of study materials, reagents, laboratory simples, instrumentation computing resources; other analysis tools: Christian A. Celaya, Youness Abdellaoui, Issam Barra, Younes Brahmi, Hassan Bourzi.

Software: implementation of the computer code and supporting algorithms: Mohammed Elhoudi, Rachid Oukhrib, Christian A. Celaya.

Supervision: oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team: Youness Abdellaoui, Abdallah Albourine, Hicham Abou Oualid.

Validation: verification, whether as a part of the activity or separate, of the overall replication or reproductivity of results/experiments and other research outputs: Daniel G. Araiza, Youness Abdellaoui, Miguel Reina, Hicham Abou Oualid.

Visualization: preparation, creation and/or presentation of the published work, specifically visualization/data presentation: Mohammed Elhoudi, Rachid Oukhrib, Christian A. Celaya, Youness Abdellaoui, Hicham Abou Oualid.

Writing-original draft: preparation, creation and/or presentation of the published work, specifically writing the initial draft: Mohammed Elhoudi, Rachid Oukhrib, Christian A. Celaya, Daniel G. Araiza.

Corresponding author

Correspondence to Hicham Abou Oualid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mohammed Elhoudi and Rachid Oukhrib contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhoudi, M., Oukhrib, R., A. Celaya, C. et al. Comparison of green bio-based cerium/alginate vs. copper/alginate beads: a study of vibrational and thermal properties using experimental and theoretical methods. J Mol Model 28, 37 (2022). https://doi.org/10.1007/s00894-022-05028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05028-8

Keywords

Navigation