Skip to main content

Advertisement

Log in

Ca functionalized N-doped porphyrin-like porous C60 as an efficient material for storage of molecular hydrogen

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It is widely known that decorating metal atoms on defective carbon nanomaterials is a useful approach to enhance the hydrogen storage capacity of these systems. Herein, density functional theory calculations are used to determine the H2 storage capacity of Ca functionalized nitrogen incorporated defective C60 fullerenes (Ca6C24N24). The strong binding, uniform distribution, and significant positive charges of the Ca atoms make this system effective material for storage of H2. Ca6C24N24 may adsorb a maximum of 6 hydrogen molecules per Ca atom, yielding a total gravimetric density of 7.7 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Beerling DJ, Fox A, Stevenson DS, Valdes PJ (2011) Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc Natl Acad Sci USA 108:9770–9775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Momirlan M, Veziroglu T (2002) Current status of hydrogen energy. Renew Sust Energ Rev 6:141–179

    Article  CAS  Google Scholar 

  3. Zhang F, Zhao P, Niu M, Maddy J (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 41:14535–14552

    Article  CAS  Google Scholar 

  4. Abe JO, Popoola A, Ajenifuja E, Popoola O (2019) Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy 44:15072–15086

    Article  CAS  Google Scholar 

  5. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121–1140

    Article  CAS  Google Scholar 

  6. Askri F, Salah MB, Jemni A, Nasrallah SB (2009) Optimization of hydrogen storage in metal-hydride tanks. Int J Hydrogen Energy 34:897–905

    Article  CAS  Google Scholar 

  7. Fukuzumi S, Suenobu T (2013) Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Trans 42:18–28

    Article  CAS  PubMed  Google Scholar 

  8. Tarasov BP, Fursikov PV, Volodin AA, Bocharnikov MS, Shimkus YY, Kashin AM, Yartys VA, Chidziva S, Pasupathi S, Lototskyy MV (2021) Metal hydride hydrogen storage and compression systems for energy storage technologies. Int J Hydrogen Energy 46:13647–13657

    Article  CAS  Google Scholar 

  9. Henwood D, Carey JD (2007) Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys Rev B 75:245413

    Article  Google Scholar 

  10. Fukutani K, Sugimoto T (2013) Physisorption and ortho–para conversion of molecular hydrogen on solid surfaces. Prog Surf Sci 88:279–348

    Article  CAS  Google Scholar 

  11. Verdinelli V, Juan A, German E (2019) Ruthenium decorated single walled carbon nanotube for molecular hydrogen storage: a first-principle study. Int J Hydrogen Energy 44:8376–8383

    Article  CAS  Google Scholar 

  12. Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B (2015) B-N@ graphene: highly sensitive and selective gas sensor. J Phys Chem C 119:24827–24836

    Article  CAS  Google Scholar 

  13. Mortazavi B (2017) Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118:25–34

    Article  CAS  Google Scholar 

  14. De DS, Flores-Livas JA, Saha S, Genovese L, Goedecker S (2018) Stable structures of exohedrally decorated C60-fullerenes. Carbon 129:847–853

    Article  CAS  Google Scholar 

  15. Esrafili MD, Khan AA, Mousavian P (2021) Synergic effects between boron and nitrogen atoms in BN-codoped C59−nBNn fullerenes (n= 1–3) for metal-free reduction of greenhouse N2O gas. RSC Adv 11:22598–22610

    Article  CAS  Google Scholar 

  16. Ao Z, Jiang Q, Zhang R, Tan T, Li S (2009) Al doped graphene: a promising material for hydrogen storage at room temperature. J Appl Phys 105:074307

    Article  Google Scholar 

  17. Cho JH, Yang SJ, Lee K, Park CR (2011) Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int J Hydrogen Energy 36:12286–12295

    Article  CAS  Google Scholar 

  18. Vehviläinen T, Ganchenkova M, Oikkonen L, Nieminen RM (2011) Hydrogen interaction with fullerenes: from C20 to graphene. Phys Rev B 84:085447

    Article  Google Scholar 

  19. van den Berg AW, Areán CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 2008:668–681

    Article  Google Scholar 

  20. Chandrakumar K, Ghosh SK (2008) Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett 8:13–19

    Article  CAS  PubMed  Google Scholar 

  21. Er S, de Wijs GA, Brocks G (2015) Improved hydrogen storage in Ca-decorated boron heterofullerenes: a theoretical study. J Mater Chem A 3:7710–7714

    Article  CAS  Google Scholar 

  22. Omidvar A, Mohajeri A (2017) Decoration of doped C60 fullerene with alkali metals: prototype nanomaterial with enhanced binding energy toward hydrogen. Int J Hydrogen Energy 42:12327–12338

    Article  CAS  Google Scholar 

  23. Zhang Y, Cheng X (2018) Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C24 fullerene: A DFT study. Chem Phys 505:26–33

    Article  CAS  Google Scholar 

  24. Li M, Li Y, Zhou Z, Shen P, Chen Z (2009) Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett 9:1944–1948

    Article  CAS  PubMed  Google Scholar 

  25. Sun Q, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583

    Article  CAS  PubMed  Google Scholar 

  26. Banhart F, Kotakoski J, Krasheninnikov AV (2010) Structural defects in graphene. ACS Nano 5:26–41

    Article  PubMed  Google Scholar 

  27. Podlivaev A, Openov L (2018) (2018) Thermal annealing of Stone-Wales defects in fullerenes and nanotubes. Phys Solid State 60:162

    Article  CAS  Google Scholar 

  28. Xu X-Y, Li J, Xu H, Xu X, Zhao C (2016) DFT investigation of Ni-doped graphene: catalytic ability to CO oxidation. New J Chem 40:9361–9369

    Article  CAS  Google Scholar 

  29. Lu Z, Lv P, Yang Z, Li S, Ma D, Wu R (2017) A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. Phys Chem Chem Phys 19:16795–16805

    Article  CAS  PubMed  Google Scholar 

  30. Xu G, Wang R, Yang F, Ma D, Yang Z, Lu Z (2017) CO oxidation on single Pd atom embedded defect-graphene via a new termolecular Eley-Rideal mechanism. Carbon 118:35–42

    Article  CAS  Google Scholar 

  31. Zhou Y, Chu W, Jing F, Zheng J, Sun W, Xue Y (2017) Enhanced hydrogen storage on Li-doped defective graphene with B substitution: a DFT study. Appl Surf Sci 410:166–176

    Article  CAS  Google Scholar 

  32. Guo J, Liu Z, Liu S, Zhao X, Huang K (2011) High-capacity hydrogen storage medium: Ti doped fullerene. Appl Phys Lett 98:023107

    Article  Google Scholar 

  33. Srinivasu K, Ghosh SK (2012) Transition metal decorated porphyrin-like porous fullerene: promising materials for molecular hydrogen adsorption. J Phys Chem C 116:25184–25189

    Article  CAS  Google Scholar 

  34. Wang Q, Sun Q, Jena P, Kawazoe Y (2009) Theoretical study of hydrogen storage in Ca-coated fullerenes. J Chem Theory Comput 5:374–379

    Article  CAS  PubMed  Google Scholar 

  35. Lee H, Ihm J, Cohen ML, Louie SG (2009) Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations. Phys Rev B 80:115412

    Article  Google Scholar 

  36. Lu QL, Huang SG, De Li Y, Wan JG, Luo QQ (2015) Alkali and alkaline-earth atom-decorated B38 fullerenes and their potential for hydrogen storage. Int J Hydrogen Energy 40:13022–13028

    Article  CAS  Google Scholar 

  37. Zhang Y, Cheng X (2018) A novel hydrogen storage medium of Ca-coated B40: first principles study. Int J Hydrogen Energy 43:15338–15347

    Article  CAS  Google Scholar 

  38. Wang Y, Perdew JP (1991) Spin scaling of the electron-gas correlation energy in the high-density limit. Phys Rev B 43:8911

    Article  CAS  Google Scholar 

  39. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  40. Ortmann F, Bechstedt F, Schmidt W (2006) Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys Rev B 73:205101

    Article  Google Scholar 

  41. Lide DR (1994) Handbook of Organic Solvents, CRC press

  42. Hamadi H, Shakerzadeh E, Esrafili MD (2019) A DFT study on the potential application of Si@C24N24 porous fullerene as an innovative and highly active catalyst for NO reduction. Chem Phys Lett 724:80–85

    Article  CAS  Google Scholar 

  43. Shakerzadeh E, MashakShabavi Z, Anota EC (2020) Enhanced electronic and nonlinear optical responses of C24N24 cavernous nitride fullerene by decoration with first row transition metals; a computational investigation. Appl Organomet Chem 34:e5694

    Article  CAS  Google Scholar 

  44. Parsa H, Shakerzadeh E, Anota EC (2021) Ngn (Ng= Ne, Ar, Kr, Xe, and Rn; n= 1, 2) encapsulated porphyrin-like porous C24N24 fullerene: a quantum chemical study. J Mol Graphics Model 108:107986

    Article  CAS  Google Scholar 

  45. Shakerzadeh E, Azizinia L (2021) Can C24N24 cavernous nitride fullerene be a potential anode material for Li-, Na-, K-, Mg-, Ca-ion batteries? Chem Phys Lett 764:138241

    Article  CAS  Google Scholar 

  46. Song Y-D, Wang L, Wu L-M (2017) How the alkali metal atoms affect electronic structure and the nonlinear optical properties of C24N24 nanocage. Optik 135:139–152

    Article  CAS  Google Scholar 

  47. Halpern AM (2012) From dimer to crystal: calculating the cohesive energy of rare gas solids. J Chem Educ 89:592–597

    Article  CAS  Google Scholar 

  48. Qi P, Chen H (2015) Theoretical study of hydrogen adsorption on Ca-decorated C48B12 clusters. AIP Adv 5:097158

    Article  Google Scholar 

  49. Mao J, Guo P, Zhang T, Zhang S, Liu C (2020) A first-principle study on hydrogen storage of metal atoms (M= Li, Ca, Sc, and Ti) coated B40 fullerene composites. Comput Theor Chem 1181:112823

    Article  CAS  Google Scholar 

  50. Doe U (2017) Target explanation document: onboard hydrogen storage for light-duty fuel cell vehicles. US Drive :1–29

  51. Ma L-J, Rong Y, Hao W, Jia J, Wu H-S (2020) Investigation of hydrogen storage on Sc/Ti-decorated novel B24N24. Int J Hydrogen Energy 45:33740–33750

    Article  CAS  Google Scholar 

  52. Ma L-J, Hao W, Jia J, Wu H-S (2021) Sc/Ti-decorated and B-substituted defective C60 as efficient materials for hydrogen storage. Int J Hydrogen Energy 46:14508–14519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MehDi D. Esrafili: conceptualization; methodology; investigation; writing, reviewing and editing; supervision; software; validation; writing, original draft preparation.

Corresponding author

Correspondence to Mehdi D. Esrafili.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D. Ca functionalized N-doped porphyrin-like porous C60 as an efficient material for storage of molecular hydrogen. J Mol Model 28, 20 (2022). https://doi.org/10.1007/s00894-021-05015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05015-5

Keywords

Navigation