Skip to main content
Log in

Quenching of magnetism in NaO2 due to electrostatic interaction induced partial orbital ordering

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The transport properties of sodium superoxide (NaO2) are governed by the transfer of charge between O2 complexes. Although it goes through a plethora of structural phase transitions, its electronic and magnetic ground state remains shrouded in mystery. In this work, we perform first-principles density functional theory (DFT) calculations to understand the relationship between electronic structure and the reason for the non-observation of an antiferromagnetic (AFM) ground state in NaO2 vis-a-vis in KO2. In the cubic phase, uniform < Na–O-Na bond angles result in high symmetry and hence degeneracy in the O-2p orbitals. The freely rotating O2 molecules result in orbital degeneracy and hence paramagnetism at room temperature. Although the degeneracy between the bonding and anti-bonding orbitals of O2 dimers is lifted in the pyrite phase, the degeneracy between σ (σ*) and π (π*) states is still maintained and hence orbital degeneracy is partially lifted as the dimers are restricted to four directions now. The O-π* states are localized in such a manner that results in a substantial magnetic moment in the π*-orbital. The < O–Na–O bond angle (= 180°) in the c-axis facilitates a superexchange mechanism and thereby the system should be AFM in the pyrite phase. In the marcasite phase, the O-atoms are aligned parallel in alternative planes. The preservation of degeneracy among the two π* orbitals leading to only long-range orbital ordering negates any chance of quasi-one-dimensional AFM spin chains in NaO2. The difference in magnetic ground states of NaO2 and KO2 arises due to the difference in the electrostatic repulsion between electrons of Na+ and K+ ions with the O2 dimers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the analyzed and generated data used for this study are available along with this manuscript.

Code availability

Not applicable.

References

  1. Wriedt HA (1987) The Mg-O (magnesium-oxygen) system. Bull Alloy Phase Diagrams 8:234–246

    Article  CAS  Google Scholar 

  2. Sangster J, Pelton AD (1992) The Li-O (lithium-oxygen) system. J Phys E 13:296–299

    CAS  Google Scholar 

  3. Hartmann P, Bender CL, Sann J, Durr AK, Jansen M, Janek J, Adelhelm P (2013) A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys Chem Chem Phys 15:11661–11672

    Article  CAS  Google Scholar 

  4. Hartmann P, Bender CL, Vracar M, Durr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232

    Article  CAS  Google Scholar 

  5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  6. Black R, Oh SH, Lee JH, Yim T, Adamas B, Nazar LF (2012) Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134:2902–2905

    Article  CAS  Google Scholar 

  7. Sun Q, Yang Y, Fu ZW (2012) Electrochemical properties of room temperature sodium-air batteries with nonaqueous electrolyte. Electrochem Commun 16:22–25

    Article  CAS  Google Scholar 

  8. McCloskey BD, Garcia JM, Luntz AC (2014) Chemical and electrochemical differences in nonaqueous Li-O2 and Na-O2 batteries. J Phys Chem Lett 5:1230–1235

    Article  CAS  Google Scholar 

  9. Arcelus O, Li C, Rojo T, Carrasco J (2015) Electronic structure of sodium superoxide bulk, (100) surface, and clusters using hybrid density functional: relevance for Na-O2 batteries. J Phys Chem Lett 6:2027–2031

    Article  CAS  Google Scholar 

  10. Kang S, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries. Nano Lett 14:1016–1020

    Article  CAS  Google Scholar 

  11. Yang S, Siegel DJ (2015) Intrinsic conductivity in sodium-air battery discharge phases: sodium superoxide vs sodium peroxide. Chem Mater 27:3852–3860

    Article  CAS  Google Scholar 

  12. Singh P, Gaur NK (2007) Lattice dynamics of sodium superoxide. Phys Lett A 371:349–353

    Article  CAS  Google Scholar 

  13. Lee B, Seo DH, Lim HD, Park I, Park KY, Kim J, Kang K (2014) First-principles study of the reaction mechanism in sodium-oxygen batteries. Chem Mater 26:1048–1055

    Article  CAS  Google Scholar 

  14. Hartmann P, Grübl D, Sommer H, Janek J, Bessler WG, Adelhelm P (2014) Pressure dynamics in metal-oxygen (metal-air) batteries: a case study on sodium superoxide cells. J Phys Chem C 118:1461–1471

    Article  CAS  Google Scholar 

  15. Solovyev IV, Pchelkina ZV, Mazurenko VV (2014) Magnetism of sodium superoxide CrystEnggComm 16:522–531

    CAS  Google Scholar 

  16. Tatara R, Leverick GM, Feng S, Wan S, Terada S, Dokko K, Watanabe M, Shao-Horn Y (2018) Tuning NaO2 cube sizes by controlling Na+ and solvent activity in Na-O2 batteries. J Phys Chem C 122(32):18316–18328

    Article  CAS  Google Scholar 

  17. Han S, Cai C, Yang F, Zhu Y, Sun Q, Zhu YG, Li H, Wang H, Shao-Horn Y, Sun X, Gu M (2020) Interrogation of the reaction mechanism in a Na-O2 battery using in situ transmission electron microscopy. ACS Nano 14(3):3669–3677

    Article  CAS  Google Scholar 

  18. Kim M, Min BI (2014) Temperature-dependent orbital physics in a spin-orbital-lattice-coupled 2p electron Mott system: The case of KO2. Phys Rev B 89: 121106 (R)

  19. Knaflič T, Klanjšek M, Sans A, Adler P, Jansen M, Felser C, Arčon D (2015) One-dimensional quantum antiferromagnetism in the p-orbital CsO2 compound revealed by electron paramagnetic resonance. Phys Rev B 91:174419

    Article  Google Scholar 

  20. Zumsteg A, Ziegler M, Kanzig W, Bosch M (1974) Magnetische und kalorische Eigenschaften von Alkali-Hyperoxid-Kristallen. Phys Condens Matter 17:267–291

    Article  CAS  Google Scholar 

  21. Känzig W, Labhart M (1976) Molecular and magnetci order in alali hyperoxides: a short review op recent work. J Phys Colloq 37:C7-39-C7-45

    Article  Google Scholar 

  22. Das SK, Lau S (2014) Archer LA (2014) Sodium-oxygen batteries: a new class of metal-air batteries. J Mater Chem A 2:12623

    Article  CAS  Google Scholar 

  23. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16:168–177

    Article  CAS  Google Scholar 

  24. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448

    Article  CAS  Google Scholar 

  25. Kwak WJ, Chen z, Yoon CS, Lee JK, Amine K, Sun YK, (2015) Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries. Nano Energy 12:123–130

    Article  CAS  Google Scholar 

  26. Ortiz-Vitoriano N, Batcho TP, Kwabi DG, Han B, Pour N, Yao KPC, Thompson CV, Shao-Horn Y (2015) Rate-dependent nucleation and growth of NaO2 in Na-O2 batteries. J Phys Chem Lett 6:2636–2643

    Article  CAS  Google Scholar 

  27. Landa-Medrano I, Pinedo R, Bi X, de Larramendi IR, Lezama L, Janek J, Amine K, Lu J, Rojo T (2016) New insights into the instability of discharge products in Na-O2 batteries. ACS Appl Mater Interfaces 8(31):20120–20127

    Article  CAS  Google Scholar 

  28. Sun B, Kretschmer K, Xie X, Munroe P, Peng Z, Wang G (2017) Hierarchical porous carbon spheres for high-performance Na-O2 batteries. Adv Mater 29(38):1606816

    Article  Google Scholar 

  29. Liu C, Carboni M, Brant WR, Pan R, Hedman J, Zhu J, Gustafsson T, Younesi R (2018) On the stability of NaO2 in NaO2 batteries. ACS Appl Mater Interfaces 10(16):13534–13541

    Article  CAS  Google Scholar 

  30. Zhao S, Wang C, Du D, Li L, Chou S, Li F, Chen J (2021) Bifunctional effects of cation additive on Na-O2 batteries. Angew Chem Int Ed 133(6):3242–3248

    Article  Google Scholar 

  31. Nandy AK, Mahadevan P, Sen P, Sarma DD (2010) KO2: realization of orbital ordering in a p-orbital system. Phys Rev Lett 105:056403

    Article  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  34. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    Article  CAS  Google Scholar 

  35. Anderson OK, Jepsen O (1984) Explicit, first-principles tight-binding theory. Phys Rev Lett 53:2571

    Article  Google Scholar 

  36. Anderson OK (1975) Linear methods in band theory. Phys Rev B 12:3060

    Article  Google Scholar 

  37. Ziegler M, Roesenfeld M, Känzig W, Fischer P (1976) Strukturuntersuchungen an alkalyhyperoxiden Helv Phys Acta 49:57–59

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the West Bengal State University, Kolkata-700126, India, and Department of Higher Education, W.B, India, for financial and infrastructure support to carry out this work. The authors also render thanks to Debabrata Samata and Subhajit Chaudhury, M.Sc. students in the Dept. of Physics, West Bengal State University for their assistance to carry out this work.

Funding

This research was supported by the West Bengal State University, Kolkata-700126, India, and the Department of Higher Education, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Contributions

S. B.: Framed the works, calculations, simulations, investigations, conceptualization and writing-original draft. M.D.R.: Framed the works, calculations, simulations, investigations, project administration, supervision, technical support, writing-original draft.

Corresponding author

Correspondence to Molly De Raychaudhury.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., De Raychaudhury, M. Quenching of magnetism in NaO2 due to electrostatic interaction induced partial orbital ordering. J Mol Model 28, 13 (2022). https://doi.org/10.1007/s00894-021-05008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05008-4

Keywords

Navigation