Skip to main content
Log in

DFT study on the gold(I)-catalyzed cycloaddition and rearrangement reactions of allene-containing allylic silyl ether

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The DFT calculation at the B3LYP/B3LYP-D3(BJ) level was carried out to explore the reaction mechanism of the synthesis of spirocyclo[4,5]decane skeleton by gold-catalyzed allenyl compounds. The more accurate energy under the CH3CN solvent in the experiment is calculated by the single-point energy of the SMD model. Computational studies have shown that the reaction consists of three main steps: intramolecular cycloaddition of the end group carbon atoms of allenyl and vinyl groups, the semipinacol rearrangement process in which the four-membered ring is reconstructed into the five-membered ring, the elimination reaction releases the catalyst and obtains the product. The calculation results show that Zheng et al. reported that the gold-catalyzed synthesis reaction can easily occur under the experimental conditions due to its low activation free energy (12.07–15.49 kcal/mol). Furthermore, it was found that the MOMO(CH2)2 substituent has higher reactivity than the corresponding reactant of the phenyl substituent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

NA.

References

  1. Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK (2016) Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth Commun 46:1643–1664

    Article  CAS  Google Scholar 

  2. Zheng Y, Tice CM, Singh SB (2014) The use of spirocyclic scaffolds in drug discovery. Bioorg Med Chem Lett 24:3673–3682

    Article  CAS  Google Scholar 

  3. Ding K, Han Z, Wang Z (2009) Spiro skeletons: a class of privileged structure for chiral ligand design. Chem- Asian J 4:32–41

    Article  CAS  Google Scholar 

  4. Tokunaga Y, Yagihashi M, Ihara M, Fukumoto K (1995) A simple total synthesis of (±)-spirojatamol and (±)-erythrodiene via intramolecular 1,3-dipolar cycloaddition. J Chem Soc Chem Commun 0:955–956

    Article  CAS  Google Scholar 

  5. Pathirana C, Fenical W, Corcoran E, Clardy J (1993) Erythrodiene: a new spirobicyclic sesquiterpene of a rare skeletal class from the caribbean gorgonian coral erythropodium caribaeorum. Tetrahedron Lett 34:3371–3372

    Article  CAS  Google Scholar 

  6. Bagchi A, Oshima Y, Hikino H (1990) Spirojatamol, a new skeletal sesquiterpenoid of nardostachys jatamansi roots. Tetrahedron 46:1523–1530

    Article  CAS  Google Scholar 

  7. Zhuo S, Zhu T, Zhou L, Mou C, Chai H, Lu Y, Pan L, Jin Z, Chi YR (2019) Access to all-carbon spirocycles through a carbene and thiourea cocatalytic desymmetrization cascade reaction. Angew Chem Int Ed 58:1784–1788

    Article  CAS  Google Scholar 

  8. Li Y, Xu S (2018) Transition-metal-catalyzed C-H functionalization for construction of quaternary carbon centers. Chem- Eur J 24:16218–16245

    Article  CAS  Google Scholar 

  9. Li S, Zhang JW, Li XL, Cheng DJ, Tan B (2016) Phosphoric acid-catalyzed asymmetric synthesis of spinol derivatives. J Am Chem Soc 138:16561–16566

    Article  CAS  Google Scholar 

  10. Rahemtulla BF, Clark HF, Smith MD (2016) Catalytic enantioselective synthesis of C1 - and C2 - symmetric spirobiindanones through counterion-directed enolate C-acylation. Angew Chem Int Ed 55:13180–13183

    Article  CAS  Google Scholar 

  11. Quasdorf KW, Overman LE (2014) Catalytic enantioselective synthesis of quaternary carbon stereo-centres. Nature 516:181–191

    Article  CAS  Google Scholar 

  12. Xu PW, Yu JS, Chen C, Cao ZY, Zhou F, Zhou J (2019) Catalytic enantioselective construction of spiro quaternary carbon stereocenters. ACS Catal 9:1820–1882

    Article  CAS  Google Scholar 

  13. Ding A, Meazza M, Guo H, Yang JW, Rios R (2018) New development in the enantioselective synthesis of spiro compounds. Chem Soc Rev 47:5946–5996

    Article  CAS  Google Scholar 

  14. Smith LK, Baxendale IR (2015) Total syntheses of natural products containing spirocarbocycles. Org Biomol Chem 13:9907–9933

    Article  CAS  Google Scholar 

  15. D’Yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM (2014) Metal complex catalysis in the synthesis of spirocarbocycles. Chem Rev 114:5775–5814

    Article  Google Scholar 

  16. Nemoto T, Ishige Y, Yoshida M, Kohno Y, Kanematsu M, Hamada Y (2010) Novel method for synthesizing spiro [4.5] cyclohexadienones through a Pd-catalyzed intramolecular ipso-friedel-crafts allylic alkylation of phenols. Org Lett 12:5020–5023

    Article  CAS  Google Scholar 

  17. Poplata S, Bauer A, Storch G, Bach T (2019) Intramolecular [2 +2] photocycloaddition of cyclic enones: selectivity control by lewis acids and mechanistic implications. Chem-Eur J 25:8135–8148

    Article  CAS  Google Scholar 

  18. Donslund BS, Nielsen RP, Monsted SM, Jorgensen KA (2016) Benzofulvenes in trienamine catalysis: stereoselective spiroindene synthesis. Angew Chem Int Ed 55:11124–11128

    Article  CAS  Google Scholar 

  19. Zhang G, Zhang L (2008) Au-containing all-carbon 1,3-dipoles:generation and [3 + 2] cycloaddition reactions. J Am Chem Soc 130:12598–12599

    Article  CAS  Google Scholar 

  20. Zhang XM, Tu YQ, Zhang FM, Chen ZH, Wang SH (2017) Recent applications of the 1,2-carbon atom migration strategy in complex natural product totalSynthesis. Chem Soc Rev 46:2272–2305

    Article  CAS  Google Scholar 

  21. Wang SH, Li BS, Tu YQ (2014) Catalytic asymmetric semipinacol rearrangements. Chem Commun 50:2393–2408

    Article  CAS  Google Scholar 

  22. Song ZL, Fan CA, Tu YQ (2011) Semipinacol rearrangement in natural product synthesis. Chem Rev 111:7523–7556

    Article  CAS  Google Scholar 

  23. Zheng TL, Zhang Y, Gou AL, Cheng F, Liu SZ, Yu L, Cui MY, Xu XT, Zhang K, Wang SH (2020) Au(I)-catalyzed cyclization/semipinacol rearrangement reaction of allenes to construct quaternary carbon-containing scaffolds. Org Lett 22:7073–7077

    Article  CAS  Google Scholar 

  24. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  26. Stephens PJ, Devlin FJ, Chabalowski CF (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  27. Metz B, Stoll H, Dolg M (2000) Small-core multiconfiguration-dirac-hartree-fock-adjusted pseudopotentials for post-d main group elements: application to PbH and PbO. J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  28. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6–31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  30. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  31. Goerigk L, Mehta N (2019) A trip to the density functional theory zoo: warnings andrecommendations for the user. Aust J Chem 72:563–573

    Article  CAS  Google Scholar 

  32. Jalali M, Hyland CJT, Bissember AC, Yates BF, Ariafard A (2021) Hydroalkylation of alkenes with 1,3-diketones via gold(III) or silver(I) catalysis: divergent mechanistic pathways revealed by a DFT-based investigation. ACS Catal 11:5795–5807

    Article  CAS  Google Scholar 

  33. Rovaletti A, Greco C, Ryde U (2021) QM/MM study of the binding of H2 to MoCuCO dehydrogenase: development and applications of improved H2 van der Waals parameters. J Mol Model 27:68

    Article  CAS  Google Scholar 

  34. Shu C, Jiang ZM, Biczysko M (2020) Toward accurate prediction of amino acid derivatives structure and energetics from DFT: glycine conformers and their interconversions. J Mol Model 26:129

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal salvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  36. Van Lenthe E, Ehlers A, Baerends EJ (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  Google Scholar 

  37. Legault CY. CYLview, 1.0b. Université de Sherbrooke: Sherbrooke, Quebec, Canada, 2009. www.cylview.org. Accessed March 18 2021

  38. Harvey JN, Himo F, Maseras F, Perrin L (2019) Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal 9:6803–6813

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for their invaluable suggestions.

Funding

This work was supported by the Special Research PLan of Shaanxi Provincial Department of Education, China (No. 18JK0340).

Author information

Authors and Affiliations

Authors

Contributions

YaMei Zhao: problem selection, writing, and data analysis.

MengDan Huo: methods, project management, result analysis, manuscript editing.

HongJi Zhou: data analysis, writing.

Corresponding author

Correspondence to YaMei Zhao.

Ethics declarations

Ethics approval

NA.

Consent to participate

NA.

Consent for publication

Written informed consent for publication was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Huo, M. & Zhou, H. DFT study on the gold(I)-catalyzed cycloaddition and rearrangement reactions of allene-containing allylic silyl ether. J Mol Model 28, 25 (2022). https://doi.org/10.1007/s00894-021-05004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05004-8

Keywords

Navigation