Skip to main content
Log in

Uniaxial tensile deformation and fracture process of structures forming by unsaturated intercalation of amine molecule into C–S–H gel

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The application of cement-based materials in engineering requires the understanding of their characteristics and subsequent deformation and fracture process of C–S–H gel in service. In this work, three types of amine molecules including tetraethylenepentamine (TEPA), polyacrylamide (PAM), and triethanolamine (TEA) were intercalated into C–S–H gel in an unsaturated status successfully. Systematical analysis was performed on the structures and properties for both C–S–H gel and corresponding amine molecules/C–S–H gel. It was found that the unsaturated intercalation of amine molecules into C–S–H gel plays a key role in the geometry and therein density of nanocomposites. Subsequently, radial distribution function (RDF), time-correlated function (TCF), and mean square displacement (MSD) were applied to characterize the structure and dynamic information of the as-generated nanocomposites, demonstrating the occurrence of interaction between amine molecules with Ca–Si layer and acceleration of water diffusion by unsaturated intercalation of amine molecules into the interlayer region in C–S–H gel. Finally, the deformation and fracture process of C–S–H gel and amine molecules/C–S–H gel under uniaxial tensile loads were given by molecular dynamics simulation. It was indicated that the tangent modulus of nanocomposites demonstrates a strain-softening nature, indicating a visco-elastic behavior. The breakage of Ca–O bonds and hydrogen bonds dominates the fracture of C–S–H gel. Weak interaction for TEPA/C–S–H gel or TEA/C–S–H gel leads to a decreased tensile strength. Local stress concentration in other interlayer region governs the deformation and fracture process in spite of the formation of strong interaction between double bonded polar oxygen atoms in PAM molecules and Ca atoms in C–S–H gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code availability

Not applicable.

References

  1. Han SH, Park WS, Yang EI (2013) Evaluation of concrete durability due to carbonation in harbor concrete structures. Constr Build Mater 48:1045–1049. https://doi.org/10.1016/j.conbuildmat.2013.07.057

    Article  Google Scholar 

  2. Vilardell J, Aguado A, Agullo L, Gettu R (1998) Estimation of the modulus of elasticity for dam concrete. Cem Concr Res 28(1):93–101. https://doi.org/10.1016/s0008-8846(97)00214-7

    Article  CAS  Google Scholar 

  3. Jung Y, Lin W, Hao H, Cho Y-H (2017) Interface behavior of partial depth repair for airport concrete pavement subjected to differential volume change. Constr Build Mater 143:515–521. https://doi.org/10.1016/j.conbuildmat.2017.03.161

    Article  CAS  Google Scholar 

  4. Sun D, Wang Y, Ma W, Lan M, Wang Z, Sun S, Tian Y, Guo H, Chen Z, Cui S, Wang Z (2020) C−S−H gel structure and water molecules behaviors under different chemical environments in a range of temperatures. Mater Today Commun 101866:1–12. https://doi.org/10.1016/j.mtcomm.2020.101866

    Article  CAS  Google Scholar 

  5. Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6(4):311–316. https://doi.org/10.1038/nmat1871

    Article  CAS  PubMed  Google Scholar 

  6. Hou DS, Ma HY, Yu Z, Li ZJ (2014) Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties. Acta Mater 67:81–94. https://doi.org/10.1016/j.actamat.2013.12.016

    Article  CAS  Google Scholar 

  7. Ha J, Chae S, Chou KW, Tyliszczak T, Monteiro PJM (2012) Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study. J Mater Sci 47(2):976–989. https://doi.org/10.1007/s10853-011-5877-x

    Article  CAS  Google Scholar 

  8. Lee BY, Kim J-K, Kim J-S, Kim YY (2009) Quantitative evaluation technique of Polyvinyl Alcohol (PVA) fiber dispersion in engineered cementitious composites. Cement Concret Comp 31(6):408–417. https://doi.org/10.1016/j.cemconcomp.2009.04.002

    Article  CAS  Google Scholar 

  9. Li CZ, Feng NQ, Li YD, Chen RJ (2005) Effects of polyethlene oxide chains on the performance of polycarboxylate-type water-reducers. Cement Concrete Res 35(5):867–873. https://doi.org/10.1016/j.cemconres.2004.04.031

    Article  CAS  Google Scholar 

  10. Yang XJ, Liu JS, Li HX, Xu LL, Ren Q, Li L (2019) Effect of triethanolamine hydrochloride on the performance of cement paste. Constr Build Mater 200:218–225. https://doi.org/10.1016/j.conbuildmat.2018.12.124

    Article  CAS  Google Scholar 

  11. Young J (1972) A review of the mechanisms of set-retardation in Portland cement pastes containing organic admixtures. Cement Concrete Res 2(4):415–433. https://doi.org/10.1111/j.1551-2916.2008.02839.x

    Article  CAS  Google Scholar 

  12. Beaudoin JJ, Patarachao B, Raki L, Alizadeh R (2009) The interaction of methylene blue dye with calcium-silicate-hydrate. J Am Ceram Soc 92(1):204–208. https://doi.org/10.1111/j.1551-2916.2008.02839.x

    Article  CAS  Google Scholar 

  13. Matsuyama H, Young JF (1999) Intercalation of polymers in calcium silicate hydrate: a new synthetic approach to biocomposites? Chem Mater 11(1):16–19. https://doi.org/10.1111/j.1551-2916.2008.02839.x

    Article  CAS  Google Scholar 

  14. Pellenq RJM, Lequeux N, van Damme H (2008) Engineering the bonding scheme in C-S-H: the iono-covalent framework. Cement Concrete Res 38(2):159–174. https://doi.org/10.1016/j.cemconres.2007.09.026

    Article  CAS  Google Scholar 

  15. Hou DS, Yu J, Wang P (2019) Molecular dynamics modeling of the structure, dynamics, energetics and mechanical properties of cement-polymer nanocomposite. Compos Part B-Eng 162:433–444. https://doi.org/10.1016/j.compositesb.2018.12.142

    Article  CAS  Google Scholar 

  16. Minet J, Abramson S, Bresson B, Franceschini A, Van Damme H, Lequeux N (2006) Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites. J Mater Chem 16(14):1379–1383. https://doi.org/10.1039/b515947d

    Article  CAS  Google Scholar 

  17. Beaudoin JJ, Patarachao B, Raki L, Alizadeh R (2009) The interaction of methylene blue dye with calcium–silicate–hydrate. J Am Ceram Soc 92(1):204–208. https://doi.org/10.1111/j.1551-2916.2008.02839.x

    Article  CAS  Google Scholar 

  18. Zhou Y, Hou DS, Jiang JY, She W, Li JQ (2017) Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: a case study of tobermorite. Phys Chem Chem Phys 19(23):15145–15159. https://doi.org/10.1039/c7cp02928d

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Hou DS, Jiang JY, Wang PG (2016) Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: experimental and molecular dynamics studies. Constr Build Mater 126:991–1001. https://doi.org/10.1016/j.conbuildmat.2016.09.110

    Article  CAS  Google Scholar 

  20. Bessaies-Bey H, Baumann R, Schmitz M, Radler M, Roussel N (2015) Effect of polyacrylamide on rheology of fresh cement pastes. Cem Concr Res 76:98–106. https://doi.org/10.1016/j.cemconres.2015.05.012

    Article  CAS  Google Scholar 

  21. Rai US, Singh RK (2005) Effect of polyacrylamide on the different properties of cement and mortar. Mat Sci Eng A-Struct 392(1–2):42–50. https://doi.org/10.1016/j.msea.2004.08.050

    Article  CAS  Google Scholar 

  22. Hou DS, Li ZJ (2014) Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: case study of Jennite. J Mater Civil Eng 26(5):930–940. https://doi.org/10.1061/(asce)mt.1943-5533.0000886

    Article  CAS  Google Scholar 

  23. Roussel N, Bessaies-Bey H, Kawashima S, Marchon D, Vasilic K, Wolfs R (2019) Recent advances on yield stress and elasticity of fresh cement-based materials. Cement Concrete Res 124:11. https://doi.org/10.1016/j.cemconres.2019.105798

    Article  CAS  Google Scholar 

  24. Ramli M, Tabassi AA (2012) Effects of polymer modification on the permeability of cement mortars under different curing conditions: a correlational study that includes pore distributions, water absorption and compressive strength. Constr Build Mater 28(1):561–570. https://doi.org/10.1016/j.conbuildmat.2011.09.004

    Article  Google Scholar 

  25. Khoshnazar R, Beaudoin JJ, Raki L, Alizadeh R (2015) Characteristics and engineering performance of C-S-H/aminobenzoic acid composite systems. J Adv Concr Technol 13(9):415–420. https://doi.org/10.3151/jact.13.415

    Article  Google Scholar 

  26. Minet J, Abramson S, Bresson B, Sanchez C, Montouillout V, Lequeux N (2004) New layered calcium organosilicate hybrids with covalently linked organic functionalities. Chem Mat 16(20):3955–3962. https://doi.org/10.1021/cm034967o

    Article  CAS  Google Scholar 

  27. Murray SJ, Subramani VJ, Selvam RP, Hall KD (2010) Molecular dynamics to understand the mechanical behavior of cement paste. Transp Res Record 2142:75–82. https://doi.org/10.3141/2142-11

    Article  CAS  Google Scholar 

  28. Khoshnazar R, Beaudoin JJ, Raki L, Alizadeh R (2014) Volume stability of calcium-silicate-hydrate/polyaniline nanocomposites in aqueous salt solutions. ACI Mater J 111(6):623. https://doi.org/10.14359/51687127

    Article  Google Scholar 

  29. Khoshnazar R, Alizadeh R, Beaudoin JJ, Raki L (2015) The physico-mechanical stability of C-S-H/polyaniline nanocomposites. Mater Struct 48(1–2):67–75. https://doi.org/10.1617/s11527-013-0168-4

    Article  CAS  Google Scholar 

  30. Picker A, Nicoleau L, Burghard Z, Bill J, Zlotnikov I, Labbez C, Nonat A, Colfen H (2017) Mesocrystalline calcium silicate hydrate: a bioinspired route toward elastic concrete materials. Sci Adv 3(11):6. https://doi.org/10.1126/sciadv.1701216

    Article  CAS  Google Scholar 

  31. Honorio T (2019) Monte-Carlo molecular modeling of temperature and pressure effects on the interactions between crystalline calcium silicate hydrate layers. Langmuir 35(11):3907–3916. https://doi.org/10.1021/acs.langmuir.8b04156

    Article  CAS  PubMed  Google Scholar 

  32. Dong BQ, Fang GH, Ding WJ, Liu YQ, Zhang JC, Han NX, Xing F (2016) Self-healing features in cementitious material with urea-formaldehyde/epoxy microcapsules. Constr Build Mater 106:608–617. https://doi.org/10.1016/j.conbuildmat.2015.12.140

    Article  CAS  Google Scholar 

  33. Shill SK, Al-Deen S, Ashraf M, Hutchison W, Hossain MM (2020) Performance of amine cured epoxy and silica fume modified cement mortar under military airbase operating conditions. Constr Build Mater 232:12. https://doi.org/10.1016/j.conbuildmat.2019.117280

    Article  CAS  Google Scholar 

  34. Matsuyama H, Young J (1999) The formation of CSH/Polymer complexes by hydration of reactive ß-dicalcium silicate. Concr Sci Eng 1:66–75

    Google Scholar 

  35. Matsuyama H, Young JF (1999) Synthesis of calcium silicate hydrate/polymer complexes: Part II. Cationic polymers and complex formation with different polymers. J Mater Res 14(8):3389–3396. https://doi.org/10.1557/JMR.1999.0459

    Article  CAS  Google Scholar 

  36. Moshiri A, Stefaniuk D, Smith SK, Morshedifard A, Rodrigues DF, Qomi MJA, Krakowiak KJ (2020) Structure and morphology of calcium-silicate-hydrates cross-linked with dipodal organosilanes. Cement Concrete Res 133:12. https://doi.org/10.1016/j.cemconres.2020.106076

    Article  CAS  Google Scholar 

  37. Nakamura J, Suzuki Y, Narukawa R, Sugawara-Narutaki A, Ohtsuki C (2021) Preparation of layered calcium silicate organically modified with two types of functional groups for varying chemical stability. J Asian Ceram Soc. https://doi.org/10.1080/21870764.2020.1854925

    Article  Google Scholar 

  38. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  39. Hamid SΑ (1981) The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O. Z Kristallographie Cryst Mater. 154:189–198. https://doi.org/10.1524/zkri.1981.154.14.189

    Article  CAS  Google Scholar 

  40. Pellenq RJ-M, Kushima A, Shahsavari R, Van Vliet KJ, Buehler MJ, Yip S, Ulm F-J (2009) A realistic molecular model of cement hydrates. P Natl A Sci 106(38):16102–16107. https://doi.org/10.1073/pnas.0902180106

    Article  Google Scholar 

  41. Sawamura T, Okuyama M, Maeda H, Obata A, Kasuga T (2016) Preparation of calcium-phosphate cements with high compressive strength using meglumine as a water reducer. J Ceram Soc Jpn 124(3):223–228. https://doi.org/10.2109/jcersj2.15249

    Article  CAS  Google Scholar 

  42. Hou D, Zhao T, Jin Z, Li Z (2015) Structure, reactivity and mechanical properties of water ultra-confined in the ordered crystal: a case study of jennite. Micropor Mesopor Mat 204:106–114. https://doi.org/10.1016/j.micromeso.2014.11.003

    Article  CAS  Google Scholar 

  43. Hou D, Ma H, Zhu Y, Li Z (2014) Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties. Acta Mater 67:81–94. https://doi.org/10.1016/j.actamat.2013.12.016

    Article  CAS  Google Scholar 

  44. Masoumi S, Zare S, Valipour H, Qomi MJA (2019) Effective Interactions between calcium-silicate-hydrate nanolayers. J Phys Chem C 123(8):4755–4766. https://doi.org/10.1021/acs.jpcc.8b08146

    Article  CAS  Google Scholar 

  45. Land G, Stephan D (2018) The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration. Cement Concret Comp 87:73–78. https://doi.org/10.1016/j.cemconcomp.2017.12.006

    Article  CAS  Google Scholar 

  46. Wang ZY, Li PF (2020) Visco-elasto-plastic constitutive model of adhesives under uniaxial compression in a range of strain rates. J Appl Polym Sci 137(33):8. https://doi.org/10.1002/app.48962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the National Supercomputing Center in Shenzhen for providing computational resources and Key Laboratory of Advanced Functional Materials, Education Ministry of China.

Funding

The authors received financial support of the National Natural Science Foundation of China (52002006 and 11802028) and General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202010005004). D. Sun also acknowledges that this work is supported by the Opening Project of State Key Laboratory of Green Building Materials (2021GBM09)’.

Author information

Authors and Affiliations

Authors

Contributions

Dawei Sun: methodology, investigation, writing original draft, review and editing. Yan Zheng: project administration, formal analysis. Jianhua Yan: supervision, formal analysis. Yali Wang: supervision, formal analysis. Jianfeng Wang: supervision, formal analysis. Ziming Wang: Supervision, formal analysis. Zherui Chen: supervision, formal analysis. Yufeng Cai: formal analysis. Suping Cui: resources, supervision, formal analysis, funding acquisition, writing—review & editing. Mingzhang Lan: supervision, formal analysis, funding, writing—review & editing. Zhiyong Wang: conceptualization, resources, formal analysis, funding acquisition.

Corresponding authors

Correspondence to Suping Cui, Mingzhang Lan or Zhiyong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zheng, Y., Yan, J. et al. Uniaxial tensile deformation and fracture process of structures forming by unsaturated intercalation of amine molecule into C–S–H gel. J Mol Model 28, 29 (2022). https://doi.org/10.1007/s00894-021-04998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04998-5

Keywords

Navigation