Skip to main content
Log in

The study of boron-nitride nanotube behavior as an atomic nano-pump for biomedicine applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Complex physical and chemical interactions take place in drug delivery using nanotube structures. Various descriptions of the ultrastructural arrangement to various nanotube design features ranging from geometries to surface modifications on the nano levels have been put forward. In this work, molecular dynamics simulations were applied to understand the boron nitride nanotube (BNNT) performance for drug delivery applications. Here, we have carried out the molecular dynamic (MD) simulation using the Tersoff force field to obtaining optimum performance of BNNT and fullerene molecules for the first time. The result of the equilibrated system accomplished excellent stability of BNNT during MD simulation, which proves the appropriateness of chosen force field. Furthermore, to describe the BNNT nano pumping process, we have calculated the fullerene molecule’s velocity and translational/rotational kinetic energy. Numerically, by increasing simulated structures’ temperature from 275 to 350 K, the nano pumping time varies from 9.31 to 8.55 ps. Moreover, the outcoming results indicate that atomic wave production in BNNT is an essential parameter for the nano pumping process. Therefore, with the help of the simulation result, we succeed in decreasing the nano pumping time to 7.79 ps by adjusting the nano pumping process parameters. Our study revealed the molecular-level dispersion mechanism of BNNT as a drug delivery tool. Concerning the medical applications of fullerenes as drug molecules, including antiviral activity, antioxidant activity, and drug delivery use, the current study can shed light on the understanding of the dispersion of nanotubes to optimize the process for several biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Data available on request from the authors.

Code availability

LAMMPS main inputs available on request from the authors.

Abbreviations

Fij :

Interatomic force between atoms i and j (eV/Å)

E:

Interaction energy (eV)

Vij :

Interatomic potential (eV)

fR :

Two-body term of Tersoff potential (eV)

fA :

Three-body term of Tersoff potential (eV)

R:

Distance parameter in Tersoff potential (Å)

D:

Distance parameter in Tersoff potential (Å)

A:

Energy parameter in Tersoff potential (eV)

B:

Energy parameter in Tersoff potential (eV)

m:

Atomic mass (u)

rij :

Atomic distance between atoms i and j (Å)

t:

Simulation time (ps)

v:

Atomic velocity (Å/ps)

a:

Atomic acceleration (Å/ps2)

f:

Frequency of atomic oscillation (1/ps)

A0 :

The amplitude of atomic oscillation (Å

λ1 :

Distance parameter in Tersoff potential (1/Å)

λ2 :

Distance parameter in Tersoff potential (1/Å)

Δt:

Molecular dynamics time step (ps)

Fα :

Embedding energy in Embedded Atom Model (eV)

φαβ :

Pair potential interaction in Embedded Atom Model (eV

References

  1. D Golberg 2009 Properties and engineering of individual inorganic nanotubes in a transmission electron microscope J Mater Chem 19 7 909 920

    Article  CAS  Google Scholar 

  2. A Rubio JL Corkill ML Cohen 1994 Theory of graphitic boron nitride nanotubes Phys Rev B 49 7 5081

    Article  CAS  Google Scholar 

  3. NG Chopra 1995 Boron nitride nanotubes Science 269 5226 966 967

    Article  CAS  PubMed  Google Scholar 

  4. X Blase 1994 Stability and band gap constancy of boron nitride nanotubes EPL (Europhysics Letters) 28 5 335

    Article  CAS  Google Scholar 

  5. W-Q Han 2002 Transformation of B x C y N z nanotubes to pure BN nanotubes Appl Phys Lett 81 6 1110 1112

    Article  CAS  Google Scholar 

  6. D Golberg 2007 Boron nitride nanotubes Adv Mater 19 18 2413 2432

    Article  CAS  Google Scholar 

  7. G Ciofani 2013 Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine Small 9 9–10 1672 1685

    Article  CAS  PubMed  Google Scholar 

  8. Ö Şen M Emanet M Çulha 2016 Biocompatibility evaluation of boron nitride nanotubes Boron Nitride Nanotubes in Nanomedicine Elsevier 41 58

    Chapter  Google Scholar 

  9. JH Kim 2018 Boron nitride nanotubes: synthesis and applications Nano convergence 5 1 1 13

    Article  Google Scholar 

  10. S-P Ju Y-C Wang T-W Lien 2011 Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study Nanoscale Res Lett 6 1 1 11

    Article  Google Scholar 

  11. CH Lee 2013 Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots Adv Mater 25 33 4544 4548

    Article  CAS  PubMed  Google Scholar 

  12. J Yu 2006 Isotopically enriched 10BN nanotubes Adv Mater 18 16 2157 2160

    Article  CAS  Google Scholar 

  13. G Ciofani 2013 Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine Int J Pharm 9 10 1672 1685

    CAS  Google Scholar 

  14. J Zhong L Dai 2012 Targeting liposomal nanomedicine to cancer therapy Technol Cancer Res Treat 11 5 475 481

    Article  CAS  PubMed  Google Scholar 

  15. B Nayebi 2020 Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water Nano Express 1 3 030012

    Article  Google Scholar 

  16. A Mortazavifar H Raissi A Akbari 2019 DFT and MD investigations on the functionalized boron nitride nanotube as an effective drug delivery carrier for Carmustine anticancer drug J Mol Liq 276 577 587

    Article  CAS  Google Scholar 

  17. G Ciofani 2010 Potential applications of boron nitride nanotubes as drug delivery systems Expert Opin Drug Deliv 7 8 889 893

    Article  CAS  PubMed  Google Scholar 

  18. H Xu 2018 Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs Theoret Chem Acc 137 7 1 15

    Article  Google Scholar 

  19. K Shayan A Nowroozi 2018 Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study Appl Surf Sci 428 500 513

    Article  CAS  Google Scholar 

  20. Z Khatti SM Hashemianzadeh 2016 Boron nitride nanotube as a delivery system for platinum drugs: drug encapsulation and diffusion coefficient prediction Eur J Pharm Sci 88 291 297

    Article  CAS  PubMed  Google Scholar 

  21. M-L Liao 2011 Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains Journal of Applied Physics 110 5 054310

    Article  Google Scholar 

  22. J Yuan KM Liew 2011 Formation and compressing behavior of coaxial silicon nanowires inside a boron nitride nanotube The Journal of Physical Chemistry C 115 2 431 435

    Article  CAS  Google Scholar 

  23. MB Panchal S Upadhyay 2012 Doubly-clamped single walled boron nitride nanotube based nanomechanical resonators: a computational investigation of their behavior Journal of Nanotechnology in Engineering and Medicine 3 4 110

    Article  Google Scholar 

  24. WH Moon HJ Hwang 2004 Molecular-dynamics simulation of structure and thermal behaviour of boron nitride nanotubes Nanotechnology 15 5 431

    Article  CAS  Google Scholar 

  25. H Ghassemi R Yassar 2010 On the mechanical behavior of boron nitride nanotubes Appl Mech Rev 63 2 287

    Article  Google Scholar 

  26. H Jami A Jabbarzadeh 2020 Ultrafast thermomechanical effects in aerosol deposition of hydroxyapatite nanoparticles on a titanium substrate Surface and Coatings Technology 382 125173

    Article  CAS  Google Scholar 

  27. H Jami A Jabbarzadeh 2021 Molecular simulation of high-velocity deposition of titanium dioxide nanoparticles on titanium Applied Surface Science 542 148567

    Article  CAS  Google Scholar 

  28. M Hekmatifar 2020 The study of asphaltene desorption from the iron surface with molecular dynamics method Journal of Molecular Liquids 318 114325

    Article  CAS  Google Scholar 

  29. A Mosavi 2020 The molecular dynamics simulation of thermal manner of Ar/Cu nanofluid flow: the effects of spherical barriers size Journal of Molecular Liquids 319 114183

    Article  CAS  Google Scholar 

  30. A Asgari 2020 Investigation of additives nanoparticles and sphere barriers effects on the fluid flow inside a nanochannel impressed by an extrinsic electric field: a molecular dynamics simulation Journal of Molecular Liquids 318 114023

    Article  CAS  Google Scholar 

  31. H Qiu R Shen W Guo 2011 Vibrating carbon nanotubes as water pumps Nano Res 4 3 284 289

    Article  CAS  Google Scholar 

  32. A Lohrasebi Y Jamali 2011 Computational modeling of a rotary nanopump J Mol Graph Model 29 8 1025 1029

    Article  CAS  PubMed  Google Scholar 

  33. R Bakry 2007 Medicinal applications of fullerenes Int J Nanomed 2 4 639

    CAS  Google Scholar 

  34. SJ Plimpton AP Thompson 2012 Computational aspects of many-body potentials MRS Bull 37 5 513 521

    Article  CAS  Google Scholar 

  35. WM Brown 2011 Implementing molecular dynamics on hybrid high performance computers–short range forces Comput Phys Commun 182 4 898 911

    Article  CAS  Google Scholar 

  36. MD Hanwell 2012 Avogadro: an advanced semantic chemical editor, visualization, and analysis platform Journal of cheminformatics 4 1 1 17

    Article  Google Scholar 

  37. JM Martínez L Martínez 2003 Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking J Comput Chem 24 7 819 825

    Article  PubMed  Google Scholar 

  38. A Stukowski 2009 Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool Modelling and Simulation in Materials Science and Engineering 18 1 015012

    Article  Google Scholar 

  39. W Mai 2019 Prism-based DGTD with a simplified periodic boundary condition to analyze FSS with D 2n symmetry in a rectangular array under normal incidence IEEE Antennas Wirel Propag Lett 18 4 771 775

    Article  Google Scholar 

  40. S Nosé 1984 A unified formulation of the constant temperature molecular dynamics methods J Chem Phys 81 1 511 519

    Article  Google Scholar 

  41. WG Hoover 1985 Canonical dynamics: equilibrium phase-space distributions Phys Rev A 31 3 1695

    Article  CAS  Google Scholar 

  42. J Tersoff 1988 New empirical approach for the structure and energy of covalent systems Phys Rev B 37 12 6991

    Article  CAS  Google Scholar 

  43. J Tersoff 1989 Modeling solid-state chemistry: interatomic potentials for multicomponent systems Phys Rev B 39 8 5566

    Article  CAS  Google Scholar 

  44. MS Daw SM Foiles MI Baskes 1993 The embedded-atom method: a review of theory and applications Materials Science Reports 9 7–8 251 310

    Article  CAS  Google Scholar 

  45. MS Daw MI Baskes 1984 Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals Phys Rev B 29 12 6443

    Article  CAS  Google Scholar 

  46. SL Mayo BD Olafson WA Goddard 1990 DREIDING: a generic force field for molecular simulations J Phys Chem 94 26 8897 8909

    Article  CAS  Google Scholar 

  47. Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge university press.

  48. E Hairer C Lubich G Wanner 2003 Geometric numerical integration illustrated by the Störmer-Verlet method Acta Numer 12 399 450

    Article  Google Scholar 

  49. WC Swope 1982 A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters J Chem Phys 76 1 637 649

    Article  CAS  Google Scholar 

  50. Z Insepov D Wolf A Hassanein 2006 Nanopumping using carbon nanotubes Nano Lett 6 9 1893 1895

    Article  CAS  PubMed  Google Scholar 

  51. M Chen 2009 Nanopumping molecules via a carbon nanotube Nano Res 2 12 938 944

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Roozbeh Sabetvand: designed the analysis, performed the analysis; wrote the paper. Hesamodin Jami: designed the analysis, proof reading.

Corresponding author

Correspondence to Hesamodin Jami.

Ethics declarations

Ethics approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabetvand, R., Jami, H. The study of boron-nitride nanotube behavior as an atomic nano-pump for biomedicine applications. J Mol Model 28, 19 (2022). https://doi.org/10.1007/s00894-021-04990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04990-z

Keywords

Navigation