Skip to main content
Log in

Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural properties and thermal conductivity of graphene-based SiC heterostructures are investigated using the reverse nonequilibrium molecular dynamics. The C/SiC/C heterostructure has the greatest value of cohesive energy due to the effect of vdW interactions between layers. The surfaces of heterostructures begin to ripple as a direct consequence of the plane fluctuations observed around T = 400 K. The thermal conductivity at room temperature is determined. The length and the armchair and zigzag orientations increase the magnitude of κ which decreases with increasing temperature. This change is attributed to the phonon Umklapp scattering and phonon cross-plane couplings. The impact of point vacancy, bi-vacancy and edge vacancy in a concentration range up to 2% is also discussed. The localization of low-frequency phonons around the vacancy induces a decaying characteristic of thermal conductivity. The effect depends on the type of vacancy and is more pronounced in heterostructures with point vacancy. The present results make pristine and defective heterostructures promising materials for various thermoelectric applications with tunable functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  CAS  PubMed  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Novoselov KS, Neto AC (2012) Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys Scr 2012(T146):014006

    Article  CAS  Google Scholar 

  4. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15(12):564–589

    Article  CAS  Google Scholar 

  5. Yankowitz M, Xue J, LeRoy BJ (2014) Graphene on hexagonal boron nitride. J Phys Condens Matter 26(30):303201

    Article  PubMed  CAS  Google Scholar 

  6. Liao W, Huang Y, Wang H, Zhang H (2019) Van der Waals heterostructures for optoelectronics: Progress and prospects. Appl Mater Today 16:435–455

    Article  Google Scholar 

  7. Yang J, Hu W (2017) Two-dimensional van der Waals heterojunctions for functional materials and devices. J Mater Chem C 5(47):12289–12297

    Article  Google Scholar 

  8. Zhang X, Wu D, Geng H (2017) Heterojunctions Based on II-VI compound semiconductor one-dimensional nanostructures and their optoelectronic applications. Crystals 7(10):307

    Article  CAS  Google Scholar 

  9. Li P, Yuan K, Lin DY, Wang T, Du W, Wei Z, Dai L et al (2019) p-MoS 2/n-InSe van der Waals heterojunctions and their applications in all-2D optoelectronic devices. RSC Adv 9(60):35039–35044

    Article  CAS  Google Scholar 

  10. Lin S, Lu Y, Xu J, Feng S, Li J (2017) High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy 40:122–148

    Article  CAS  Google Scholar 

  11. Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J, Watanabe K, Taniguchi T, LeRoy BJ (2012) Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat Phys 8 (5):382

    Article  CAS  Google Scholar 

  12. Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, LeRoy BJ (2011) Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater 10(4):282

    Article  CAS  PubMed  Google Scholar 

  13. Jung J, Raoux A, Qiao Z, MacDonald AH (2014) Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys Rev B 89(20):205414

    Article  CAS  Google Scholar 

  14. Decker R, Wang Y, Brar VW, Regan W, Tsai HZ, Wu Q, Crommie MF (2011) Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett 11 (6):2291–2295

    Article  CAS  PubMed  Google Scholar 

  15. Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari BL, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F (2019) Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat Phys 15(3):237–241

    Article  CAS  Google Scholar 

  16. Jin C, Regan EC, Yan A, Utama MIB, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F (2019) Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567(7746):76– 80

    Article  CAS  PubMed  Google Scholar 

  17. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722

    Article  CAS  PubMed  Google Scholar 

  18. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Mishchenko A, Peres NMR (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071):947–950

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Hernandez E, Salazar-Garcia E, Shakerzadeh E, Chigo-Anota E (2020) Effect of dehydrogenated hydrocarbon doping on the electronic properties of graphene-type nanosheets. Phys Lett A 384(27):126702

    Article  CAS  Google Scholar 

  20. Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 76 (7):073103

    Article  CAS  Google Scholar 

  21. Hunt B, Sanchez-Yamagishi JD, Young AF, Yankowitz M, LeRoy BJ, Watanabe K, Ashoori RC (2013) Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340(6139):1427–1430

    Article  CAS  PubMed  Google Scholar 

  22. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399

    Article  CAS  PubMed  Google Scholar 

  23. Ansari R, Malakpour S, Ajori S (2014) Structural and elastic properties of hybrid bilayer graphene/h-BN with different interlayer distances using DFT. Superlattice Microstruct 72:230–237

    Article  CAS  Google Scholar 

  24. Zhang J, Hong Y, Yue Y (2015) Thermal transport across graphene and single layer hexagonal boron nitride. J Appl Phys 117(13):134307

    Article  CAS  Google Scholar 

  25. Yu L, Lee YH, Ling X, Santos EJ, Shin YC, Lin Y, Palacios T (2014) Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett 14(6):3055–3063

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Chou MY (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep 4: 3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120

    Article  CAS  PubMed  Google Scholar 

  28. Zan R, Ramasse QM, Jalil R, Georgiou T, Bangert U, Novoselov KS (2013) Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7(11):10167–10174

    Article  CAS  PubMed  Google Scholar 

  29. Jiang JW, Park HS (2014) Mechanical properties of MoS2/graphene heterostructures. Appl Phys Lett 105(3):033108

    Article  CAS  Google Scholar 

  30. Liu B, Meng F, Reddy CD, Baimova JA, Srikanth N, Dmitriev SV, Zhou K (2015) Thermal transport in a graphene/MoS2 bilayer heterostructure: a molecular dynamics study. Rsc Adv 5(37):29193–29200

    Article  CAS  Google Scholar 

  31. Liu X, Li Z (2015) Electric field and strain effect on graphene-MoS2 hybrid structure: ab initio calculations. J Phys Chem Lett 6(16):3269–3275

    Article  CAS  Google Scholar 

  32. Shaposhnikov VL, Krivosheeva AV, Borisenko VE (2019) Impact of defects on electronic properties of heterostructures constructed from monolayers of transition metal dichalcogenides. Phys Status Solidi (b) 256(5):1800355

    Article  CAS  Google Scholar 

  33. Bafekry A, Akgenc B, Shayesteh SF, Mortazavi B (2019) Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures. Appl Surf Sci: 144450

  34. Khan A, Paul R, Subrina S (2017) Thermal transport in graphene/stanene hetero-bilayer nanostructures with vacancies: an equilibrium molecular dynamics study. RSC Adv 7(71):44780–44787

    Article  CAS  Google Scholar 

  35. Drissi LB, Saidi EH, Bousmina M, Fassi-Fehri O (2012) DFT investigations of the hydrogenation effect on silicene/graphene hybrids. J Phys Condens Matter 24(48):485502

    Article  CAS  PubMed  Google Scholar 

  36. Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B 81(7):075433

    Article  CAS  Google Scholar 

  37. Yang D, Ma F, Sun Y, Hu T, Xu K (2012) Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation. Appl Surf Sci 258(24):9926–9931

    Article  CAS  Google Scholar 

  38. Drissi LB, Sadki K (2015) Elastic properties and sound velocities of silicane/graphane hybrids. Mech Mater 89:151–158

    Article  Google Scholar 

  39. Sadki K, Kourra MH, Drissi LB (2019) Non linear and thermoelastic behaviors of group-IV hybrid 2D nanosheets. Superlattice Microstruct 132:106172

    Article  CAS  Google Scholar 

  40. Guo SD, Dong J, Liu JT (2018) Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study. Phys Chem Chem Phys 20(34):22038–22046

    Article  CAS  PubMed  Google Scholar 

  41. Drissi LB, Sadki K, Kourra MH (2017) Mechanical response of SiC sheet under strain. Mater Chem Phys 201:199–206

    Article  CAS  Google Scholar 

  42. Sadki K, Zanane FZ, Ouahman M, Drissi LB (2020) Molecular dynamics study of pristine and defective hexagonal BN, SiC and SiGe monolayers. Mater Chem Phys 242:122474

    Article  CAS  Google Scholar 

  43. Drissi LB, Sadki K (2016) Effect of hydrogen coverage on elastic response and acoustic wave propagation of SiC sheet. Mech Mater 96:76–82

    Article  Google Scholar 

  44. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B 80:155453

    Article  CAS  Google Scholar 

  45. Kınacı A, Haskins JB, Sevik C, Çağın T (2012) Thermal conductivity of BN-C nanostructures. Phys Rev B 86(11):115410

    Article  CAS  Google Scholar 

  46. Tersoff J (1994) Chemical order in amorphous silicon carbide. Phys Rev B 49(23):16349

    Article  CAS  Google Scholar 

  47. Rappé AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114 (25):10024–10035

    Article  Google Scholar 

  48. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B 80:155453

    Article  CAS  Google Scholar 

  49. Le MQ (2017) Cohesive energy in graphene/MoS 2 heterostructures. Meccanica 52(1):307–315

    Article  Google Scholar 

  50. Lu N, Guo H, Wang L, Wu X, Zeng XC (2014) van der Waals trilayers and superlattices: modification of electronic structures of MoS 2 by intercalation. Nanoscale 6(9):4566–4571

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Yang H, Liao N, Yang P (2014) Investigation on thermal conductivity of bilayer graphene nanoribbons. RSC Adv 4(97):54474–54479

    Article  CAS  Google Scholar 

  52. Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Ma F, Sun M (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7(27):16801–16822

    Article  CAS  Google Scholar 

  54. Dewapriya MAN, Phani AS, Rajapakse RKND (2013) Influence of temperature and free edges on the mechanical properties of graphene. Model Simul Mater Sci Eng 21(6):065017

    Article  CAS  Google Scholar 

  55. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Obergfell D, Roth S, Girit C, Zettl A (2007) On the roughness of single-and bi-layer graphene membranes. Solid State Commun 143 (1-2):101–109

    Article  CAS  Google Scholar 

  56. Gan LY, Zhao YJ, Huang D, Schwingenschlögl U (2013) First-principles analysis of MoS 2/Ti 2 C and MoS 2/Ti 2 C Y 2 (Y= F and OH) all-2D semiconductor/metal contacts. Phys Rev B 87(24):245307

    Article  CAS  Google Scholar 

  57. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555

    Article  CAS  PubMed  Google Scholar 

  58. Lindsay L, Broido DA, Mingo N (2011) Flexural phonons and thermal transport in multilayer graphene and graphite. Phys Rev B 83(23):235428

    Article  CAS  Google Scholar 

  59. Maruyama S (2002) A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys B 323(1-4):193–195

    Article  CAS  Google Scholar 

  60. Evans WJ, Hu L, Keblinski P (2010) Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett 96(20):203112

    Article  CAS  Google Scholar 

  61. Yang N, Zhang G, Li B (2010) Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5(2):85–90

    Article  CAS  Google Scholar 

  62. Hong Y, Zhang J, Huang X, Zeng XC (2015) Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale 7(44):18716–18724

    Article  CAS  PubMed  Google Scholar 

  63. Xu G, Torres CM, Tang J, Bai J, Song EB, Huang Y, Duan X, Zhang Y, Wang KL (2011) Edge effect on resistance scaling rules in graphene nanostructures. Nano Lett 11(3):1082–1086

    Article  CAS  PubMed  Google Scholar 

  64. Ziman JM (2001) Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press, London

    Book  Google Scholar 

  65. Ecsedy DJ, Klemens PG (1977) Thermal resistivity of dielctric crystals due to four-phonon processes and optical modes. Phys Rev B 15(12):5957

    Article  CAS  Google Scholar 

  66. Yeo JJ, Liu Z, Ng TY (2012) Comparing the effects of dispersed Stone-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Nanotechnology 23(38):385702

    Article  PubMed  CAS  Google Scholar 

  67. Khan A, Navid I, Noshin M, Uddin H, Hossain F, Subrina S (2015) Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials. Electronics 4(4):1109–1124

    Article  CAS  Google Scholar 

  68. Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81(20):205441

    Article  CAS  Google Scholar 

  69. Pereira LFC, Donadio D (2013) Divergence of the thermal conductivity in uniaxially strained graphene. Phys Rev B 87(12):125424

    Article  CAS  Google Scholar 

  70. Zhao W, Wang Y, Wu Z, Wang W, Bi K, Liang Z, Yang J, Chen Y, Xu Z, Ni Z (2015) Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Sci Rep 5:11962

    Article  PubMed  PubMed Central  Google Scholar 

  71. Khan A, Navid IA, Noshin M, Subrina S (2017) Thermal transport characterization of hexagonal boron-nitride nanoribbons using molecular dynamics simulation. AIP Adv 7(10):105110

    Article  CAS  Google Scholar 

  72. Hao F, Fang D, Xu Z (2011) Mechanical and thermal transport properties of graphene with defects. App Phys Lett 99(4):041901

    Article  CAS  Google Scholar 

  73. Zhang Y, Ma J, Wei N, Yang J, Pei QX (2021) Recent progress in the development of thermal interface materials: a review. Phys Chem Chem Phys 23(2):753–776

    Article  CAS  PubMed  Google Scholar 

  74. Cui Y, Li M, Hu Y (2020) Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities. J Mater Chem C 8(31):10568–10586

    Article  CAS  Google Scholar 

  75. Karak S, Paul S, Negi D, Poojitha B, Srivastav SK, Das A, Saha S (2021) Hexagonal boron nitride-graphene heterostructures with enhanced interfacial thermal conductance for thermal management applications. ACS Appl Nano Mater 4(2):1951–1958

    Article  CAS  Google Scholar 

  76. Sajid M, Hassan I, Rahman A (2017) An overview of cooling of thermoelectric devices. Renew Sustain Energy Rev 78:15–22

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the “Académie Hassan II des Sciences et Techniques”-Morocco for its financial support. The authors also thank the LPHE-MS, Faculty of Sciences, Mohammed V University in Rabat, Morocco for the technical support through computer facilities, where all the calculations have been performed.

Author information

Authors and Affiliations

Authors

Contributions

F. Z. Zanane: conceptualization, investigation, methodology, visualization, writing. K. Sadki: conceptualization, investigation, methodology, visualization, writing. L. B. Drissi: conceptualization, investigation, methodology, visualization, writing, review and editing. E. H. Saidi: conceptualization, investigation, methodology, visualization, writing.

Corresponding authors

Correspondence to K. Sadki or L. B. Drissi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanane, F.Z., Sadki, K., Drissi, L.B. et al. Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study. J Mol Model 28, 88 (2022). https://doi.org/10.1007/s00894-021-04985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04985-w

Keywords

Navigation