Skip to main content
Log in

Principle component analysis for nonlinear optical properties of thiophene-based metal complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The simulation of molecular descriptors of thiophene-based metal complexes has been performed using Gaussian 03 and Atomistic toolkit Virtual Nanolab (ATK-VNL) software. It is found that with respect to the obtained molecular descriptors, the molecules show distinct properties. The dimensions of the data set being large, the principal components (PC1 and PC2) have been obtained using principal component analysis (PCA). Analysis has been done for the Linear regression of principal components with first hyperpolarizability and second hyperpolarizability of the molecules. The results indicate that, of all the calculated molecular descriptors of thiophene-based metal complexes, the molecular energy (E), ionization energy (EI), and molecular dipole moment (D) plays a dominant role in determining their nonlinear optical properties i.e., the hyperpolarizability value, of the studied molecules. Also, the molecular descriptors, polarizability (P) and molar refractivity (MR), show considerable impact on the nonlinear optical properties of the studied molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

We have used Gaussian 03 and ATK-VNL software.

References

  1. Chang DE, Vuletić V, Lukin MD (2014) Quantum nonlinear optics—photon by photon. Nat Photonics 8(9):685–694. https://doi.org/10.1038/nphoton.2014.192

    Article  CAS  Google Scholar 

  2. Zyss, Joseph. Molecular nonlinear optics: materials, physics, and devices. Academic press, 2013.

  3. Yin, Xiaobo, et al. "Edge nonlinear optics on a MoS2 atomic monolayer." Science 344.6183 (2014): 488–490. https://doi.org/10.1126/science.1250564

  4. Lacroix PG, Malfant I, Lepetit C (2016) Second-order nonlinear optics in coordination chemistry: an open door towards multi-functional materials and molecular switches. Coord Chem Rev 308:381–394. https://doi.org/10.1016/j.ccr.2015.05.015

    Article  CAS  Google Scholar 

  5. Liu X, Guo Q, Qiu J (2017) Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv Mater 29(14):1605886. https://doi.org/10.1002/adma.201605886

    Article  CAS  Google Scholar 

  6. Dini Danilo, Calvete Mario JF, Hanack Michael (2016) Nonlinear optical materials for the smart filtering of optical radiation. Chem Rev 116(22):13043–13233. https://doi.org/10.1021/acs.chemrev.6b00033

    Article  CAS  PubMed  Google Scholar 

  7. Kalanoor Basanth S et al (2016) Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. Acs Photonics 3(3):361–370. https://doi.org/10.1021/acsphotonics.5b00746

    Article  CAS  Google Scholar 

  8. Ejuh Geh Wilson et al (2016) Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1, 4-bis (3-carboxyl-3-oxo-prop-1-enyl) benzene molecule. J Iran Chem Soc 13(11):2039–2048. https://doi.org/10.1007/s13738-016-0921-z

    Article  CAS  Google Scholar 

  9. Karakas, A., et al. "Second-order hyperpolarizability and susceptibility calculations of a series of ruthenium complexes." 2013 15th International Conference on Transparent Optical Networks (ICTON). IEEE, 2013. https://doi.org/10.1109/ICTON.2013.6602901

  10. Karakas Asli et al (2016) Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications. Opt Mater 56:8–17. https://doi.org/10.1016/j.optmat.2016.01.036

    Article  CAS  Google Scholar 

  11. Liu Yongjun et al (2001) Theoretical investigation on second-order nonlinear optical properties of (dicyanomethylene)-pyran derivatives. J Mol Struct 570(1–3):43–51. https://doi.org/10.1016/S0022-2860(01)00479-3

    Article  CAS  Google Scholar 

  12. Powell CE, Humphrey MG (2004) Nonlinear optical properties of transition metal acetylides and their derivatives. Coord Chem Rev 248(7–8):725–756. https://doi.org/10.1016/j.ccr.2004.03.009

    Article  CAS  Google Scholar 

  13. Ejuh, G. W., et al. "Prediction of electronic structure, dielectric and thermodynamical properties of flurbiprofen by density functional theory calculation." Karbala International Journal of Modern Science (2017). https://doi.org/10.1016/j.kijoms.2017.10.001

  14. Nishal Vandna et al (2015) Optoelectronic characterization of zinc complexes for display device applications. J Mater Sci Mater Electron 26(9):6762–6768. https://doi.org/10.1007/s10854-015-3286-7

    Article  CAS  Google Scholar 

  15. Serrano-Andrés Luis et al (2009) Linear and nonlinear optical properties of a series of Ni-dithiolene derivatives. J Chem Phys 131(13):134312. https://doi.org/10.1063/1.3238234

    Article  CAS  PubMed  Google Scholar 

  16. PereiraSilva PS et al (2014) Experimental and theoretical studies of the second-and third-order NLO properties of a semi-organic compound: 6-aminoquinolinium iodide monohydrate. Chem Phys 428:67–74. https://doi.org/10.1016/j.chemphys.2013.11.001

    Article  CAS  Google Scholar 

  17. Nya, F. Tchangnwa, G. W. Ejuh, and J. M. B. Ndjaka. (2017) "Theoretical study of optoelectronic and thermodynamic properties of molecule 4-[2-(2-N, N-dihydroxy amino thiophene) vinyl] benzanamine: Influence of hydroxyl position." Mater Lett 202: 89-95. https://doi.org/10.1016/j.matlet.2017.05.064

  18. Nouemo S et al (2015) Ab initio study of opto electric properties of the molecules pyrimethamine and sulfadoxine. J King Saud Univ Sci 27(4):349–355. https://doi.org/10.1016/j.jksus.2015.03.002

    Article  Google Scholar 

  19. Anu, Anurag Srivastava, and Mohd Shahid Khan (2020) "Density functional theory calculations for electronic, optoelectronic and thermodynamic properties of dibenzothiophene metal complexes." Mater Res Express 7.1: 016311, DOI: https://doi.org/10.1088/2053-1591/ab6922

  20. Anu, Anurag Srivastava, and Mohd. Shahid Khan. (2018) "First principle study of single electron transistor based on metal-organic complex of dibenzothiophene." Org Electron 53: 227–234. DOI: https://doi.org/10.1016/j.orgel.2017.11.042

  21. Praveen, P. A., and R. Ramesh Babu. "Evaluation of nonlinear optical properties from molecular descriptors of benzimidazole metal complexes by principal component analysis." J Mol Graph Model 93 (2019): 107447. https://doi.org/10.1016/j.jmgm.2019.107447

  22. Pearson, Karl. "LIII. On lines and planes of closest fit to systems of points in space." The London, Edinburgh, and Dublin philosophical magazine and journal of science 2.11 (1901): 559-572, DOI: https://doi.org/10.1080/14786440109462720

  23. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52. https://doi.org/10.1016/0169-7439(87)80084-9

    Article  CAS  Google Scholar 

  24. Abdi H, Williams LJ (2010) Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2(4):433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  25. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303–304. https://doi.org/10.1038/nbt0308-303

    Article  CAS  PubMed  Google Scholar 

  26. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831. https://doi.org/10.1039/C3AY41907J

    Article  CAS  Google Scholar 

  27. Geladi, Paul, and Johan Linderholm. "Principal component analysis☆." (2020). https://doi.org/10.1016/B978-0-12-409547-2.14892-9

  28. Ivosev G, Burton L, Bonner R (2008) Dimensionality reduction and visualization in principal component analysis. Anal Chem 80(13):4933–4944. https://doi.org/10.1021/ac800110w

    Article  CAS  PubMed  Google Scholar 

  29. Giuliani A (2017) The application of principal component analysis to drug discovery and biomedical data. Drug Discovery Today 22(7):1069–1076. https://doi.org/10.1016/j.drudis.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  30. M. J. Frisch, et al. "GAUSSIAN 03 software package." Gaussian Inc., Wallingford (2004), accessed 15th March 2021.

  31. Becke Axel D (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B37(2):785. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  33. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  34. Atomistic ToolKit-Virtual Nanolab. Quantumwise A/S. [Online]. Available: http:// quantumwise.com/. Accessed 12 April 2020.

Download references

Acknowledgements

The authors are thankful to Jamia Millia Islamia, New Delhi, for the computational facilities.

Funding

Institutional facilities supported the research.

Author information

Authors and Affiliations

Authors

Contributions

Anu performed the study and wrote the manuscript; AS and MSK guide and check the manuscript.

Corresponding author

Correspondence to Mohd.Shahid Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anu, Srivastava, A. & Khan, M. Principle component analysis for nonlinear optical properties of thiophene-based metal complexes. J Mol Model 27, 340 (2021). https://doi.org/10.1007/s00894-021-04967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04967-y

Keywords

Navigation