Skip to main content

Advertisement

Log in

How does nintedanib overcome cancer drug-resistant mutation of RET protein-tyrosine kinase: insights from molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Targeted drug therapies represent a therapeutic breakthrough in the treatment of human cancer. However, the emergence of acquired resistance inevitably compromises therapeutic drugs. Rearranged during transfection (RET) proto-oncogene, which encodes a receptor tyrosine kinase, is a target for several kinds of human cancer such as thyroid, breast, and colorectal carcinoma. A single mutation L881V at the RET kinase domain was found in familial medullary thyroid carcinoma. Nintedanib can effectively inhibit the RET L881V mutant, whereas its analog compound 1 is unable to combat this mutant. However, the underlying mechanism was still unexplored. Here, molecular dynamics (MD) simulations, binding free energy calculations, and structural analysis were performed to uncover the mechanism of overcoming the resistance of RET L881V mutant to nintedanib. Energetic analysis revealed that the L881V mutant remained sensitive to the treatment of nintedanib, whereas it was insensitive to the compound 1. Structural analysis further showed that the distribution of K758, D892, and N879 network had a detrimental effect on the binding of compound 1 to the L881V mutant. The obtained results may provide insight into the mechanism of overcoming resistance in the RET kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The relevant data are available from the corresponding author upon reasonable request.

Code availability

N/A.

References

  1. Roskoski R (2021) Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol Res 165:105463

    CAS  PubMed  Google Scholar 

  2. Ding C, Song Z, Shen A et al (2020) Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharm Sin B 10:2272–2298

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ward RA, Fawell S, Floc’h N, et al (2020) Challenges and opportunities in Cancer Drug Resistance. Chem Rev 121:3297–3351

    PubMed  Google Scholar 

  4. Ni D, Li Y, Qiu Y et al (2020) Combining allosteric and orthosteric drugs to overcome drug resistance. Trends Pharmacol Sci 41:336–348

    CAS  PubMed  Google Scholar 

  5. Lu S, Qiu Y, Ni D et al (2020) Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discov Today 25:177–184

    CAS  PubMed  Google Scholar 

  6. Jiang L, Wang Y, Li Q et al (2021) Design, synthesis, and biological evaluation of Bcr-Abl PROTACs to overcome T315I mutation. Acta Pharm Sin B 11:1315–1328

    CAS  PubMed  Google Scholar 

  7. Kong X, Pan P, Sun H et al (2019) Drug discovery targeting anaplastic lymphoma kinase (ALK). J Med Chem 62:10927–10954

    CAS  PubMed  Google Scholar 

  8. Jia Y, Yun C-H, Park E et al (2016) Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534:129–132

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Duong MTH, Lee J-H, Ahn H-C (2020) C-Jun N-terminal kinase inhibitors: structural insight into kinase-inhibitor complexes. Comput Struct Biotechnol J 18:1440–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salvatore D, Santoro M, Schlumberger M (2021) The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol 17:296–306

    CAS  PubMed  Google Scholar 

  11. Li AY, McCusker MG, Russo A et al (2019) RET fusions in solid tumors. Cancer Treat Rev 81:101911

    PubMed  Google Scholar 

  12. Liu X, Shen T, Mooers BHM et al (2018) Drug resistance profiles of mutations in the RET kinase domain. Br J Pharmacol 175:3504–3515

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moccia M, Frett B, Zhang L et al (2020) Bioisosteric discovery of npa101.3, a second-generation ret/vegfr2 inhibitor optimized for single-agent polypharmacology. J Med Chem 63:4506–4516

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan K, Wang X, Dong H et al (2021) Selective inhibition of CDK4/6: a safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 11:30–54

    CAS  PubMed  Google Scholar 

  15. Terzyan SS, Shen T, Liu X et al (2019) Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J Biol Chem 294:10428–10437

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ravindranath PA, Forli S, Goodsell DS et al (2015) AutoDockFR: advances in Protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput Biol 11:e1004586

    PubMed  PubMed Central  Google Scholar 

  17. Leonard AN, Wang E, Monje-Galvan V, Klauda JB (2019) Developing and testing of lipid force fields with applications to modeling cellular membranes. Chem Rev 119:6227–6269

    CAS  PubMed  Google Scholar 

  18. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    CAS  PubMed  Google Scholar 

  20. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    CAS  Google Scholar 

  21. Wang Y, Ji D, Lei C et al (2021) Mechanistic insights into the effect of phosphorylation on Ras conformational dynamics and its interactions with cell signaling proteins. Comput Struct Biotechnol J 19:1184–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  22. He X, Huang N, Qiu Y et al (2021) Conformational selection mechanism provides structural insights into the optimization of APC-asef inhibitors. Molecules 26:962

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu S, He X, Yang Z et al (2021) Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 12:4721

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Navarro G, Gonzalez A, Campanacci S et al (2020) Experimental and computational analysis of biased agonism on full-length and a C-terminally truncated adenosine A2A receptor. Comput Struct Biotechnol J 18:2723–2732

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang Z, Zhu Y, Long J et al (2020) Both intra and inter-domain interactions define the intrinsic dynamics and allosteric mechanism in DNMT1s. Comput Struct Biotechnol J 18:749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu X, Brooks BR (2003) Self-guided Langevin dynamics simulation method. Chem Phys Lett 381:512–518

    CAS  Google Scholar 

  27. Lu S, Ni D, Wang C et al (2019) Deactivation pathway of Ras GTPase underlies conformational substates as targets for drug design. ACS Catal 9:7188–7196

    CAS  Google Scholar 

  28. Ni D, Wei J, He X et al (2021) Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci 12:464–476

    CAS  Google Scholar 

  29. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N.long(N)method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Google Scholar 

  30. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    CAS  Google Scholar 

  31. Feng L, Lu S, Zheng Z et al (2021) Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects. Sci Bull 66:1559–1570

    CAS  Google Scholar 

  32. Lu S, Chen Y, Wei J et al (2021) Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharm Sin B 11:1355–1361

    CAS  PubMed  Google Scholar 

  33. Shi Y, Zhang X, Mu K et al (2020) D3Targets-2019-nCoV: a webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharm Sin B 10:1239–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jang H, Zhang M, Nussinov R (2020) The quaternary assembly of KRas4B with Raf-1 at the membrane. Comput Struct Biotechnol J 18:737–748

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    CAS  Google Scholar 

  36. Wang E, Sun H, Wang J et al (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119:9478–9508

    CAS  PubMed  Google Scholar 

  37. Xie T, Yu J, Fu W et al (2019) Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: a molecular simulation study. Phys Chem Chem Phys 21:12931–12947

    CAS  PubMed  Google Scholar 

  38. Li X, Dai J, Ni D et al (2020) Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B. Int J Biol Macromol 144:643–655

    CAS  PubMed  Google Scholar 

  39. Li X, Ye M, Wang Y, et al (2020) How does Parkinson’s disease-related mutations disrupt the dimerization of WD40 domain in LRRK2: Phys Chem Chem Phys 20421–20433.

  40. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    CAS  PubMed  Google Scholar 

  41. Zhang Q, Chen Y, Ni D et al (2021) Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2021.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Gao J, Zhao S et al (2020) Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent. Acta Pharm Sin B 11:1947–1964

    PubMed  PubMed Central  Google Scholar 

  43. Qiu Y, Yin X, Li X et al (2021) Untangling dual-targeting therapeutic mechanism of epidermal growth factor receptor (EGFR) based on reversed allosteric communication. Pharmaceutics 13:747

    PubMed  PubMed Central  Google Scholar 

  44. Lu S, Zhang J (2019) Small-molecule allosteric modulators of G-protein-coupled receptors: drug-target interactions. J Med Chem 62:24–45

    CAS  PubMed  Google Scholar 

  45. Lu S, Shen Q, Zhang J (2019) Allosteric methods and their applications: facilitating the discovery of allosteric drugs and the investigation of allosteric mechanisms. Acc Chem Res 52:492–500

    CAS  PubMed  Google Scholar 

  46. Lu S, He X, Ni D et al (2019) Allosteric modulator discovery: from serendipity to structure-based design. J Med Chem 62:6405–6421

    CAS  PubMed  Google Scholar 

  47. Mahalapbutr P, Kongtaworn N, Rungrotmongkol T (2020) Structural insight into the recognition of S-adenosyl-L-homocryteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2’-O-methyltransferase. Comput Struct Biotechnol J 18:2757–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang B, Peng F, Huang W et al (2020) Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharm Sin B 10:1492–1510

    CAS  PubMed  Google Scholar 

  49. Ji M, Ding Y, Li X et al (2019) Computational investigation of a ternary model of SnoN-SMAD3-SMAD4 complex. Comput Biol Chem 83:107159

    CAS  PubMed  Google Scholar 

  50. Shah M, Ahmad B, Choi S et al (2020) Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs corss-neutralization. Comput Struct Biotechnol J 18:3402–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu X, Tian W, Cheng J et al (2020) Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer. Comput Biol Chem 84:107194

    CAS  PubMed  Google Scholar 

  52. Zheng G, Xu S, Liu W et al (2021) Deciphering the resistance mechanism of RET kinase mutant against vandetanib and nintedanib using molecular dynamics simulations. J Exp Nanosci 16:279–294

    CAS  Google Scholar 

  53. Gogoi P, Kanaujia SP (2019) Role of structural features in oligomerization, active-site integrity and ligand binding of ribose-1,5-bisphosphate isomerase. Comput Struct Biotechnol J 17:333–344

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xing J, Mei H, Huang S, Zhang D, Pan X (2019) An energetically favorable ligand entrance gate of a multidrug transporter revealed by partial nudged elastic band simulations. Comput Struct Biotechnol J 17:319–323

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors highly thank the Supercomputer Center at Wuhan University for providing computational resources.

Author information

Authors and Affiliations

Authors

Contributions

SC, XJ, CT, MF, and WX performed molecular docking and MD simulations and wrote the manuscript. JL and DJ revised the manuscript.

Corresponding authors

Correspondence to Dong Ji or Jun Lv.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shu Cao and Xu Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Jiang, X., Tan, C. et al. How does nintedanib overcome cancer drug-resistant mutation of RET protein-tyrosine kinase: insights from molecular dynamics simulations. J Mol Model 27, 337 (2021). https://doi.org/10.1007/s00894-021-04964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04964-1

Keywords

Navigation