Skip to main content
Log in

Are HOMO–LUMO gaps reliable indicators of explosive impact sensitivity?

  • Short comments
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A high priority in designing and evaluating proposed explosives is to minimize sensitivity, i.e., vulnerability to unintended detonation due to an accidental stimulus, such as impact. In order to establish a capability for predicting impact sensitivity, there have been numerous attempts to correlate it with some molecular or crystal property or properties. One common approach has been to relate impact sensitivity to the difference between the energies of the highest-occupied and lowest-unoccupied molecular orbitals of the explosive molecule, the “HOMO–LUMO gap.” In the present study, we tested this approach for a series of twelve explosive nitroaromatics, using four different computational methods. We found that the HOMO–LUMO gap does not appear to be a reliable indicator of relative impact sensitivity. Since detonation initiation involves a series of steps, all of which influence sensitivity; it seems more realistic to try to identify fundamental factors and general trends related to sensitivity ‒ an approach that has already had some success ‒ rather than to seek correlations with one or two specific properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Code availability

Not applicable.

References

  1. H-H Licht 2000 Performance and sensitivity of explosives Propell Explos Pyrotech 25 126 132

    Article  CAS  Google Scholar 

  2. V Džingalašević G Antić D Mlađenović 2004 Ratio of detonation pressure and critical pressure of high explosives with different compounds Sci Tech Rev 54 72 76

    Google Scholar 

  3. TM Klapötke CM Sabaté 2008 Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds Chem Mater 20 3629 3637

    Article  Google Scholar 

  4. H Gao JM Shreeve 2011 Azole-based energetic salts Chem Rev 111 7377 7436

    Article  CAS  PubMed  Google Scholar 

  5. P Politzer JM Murray 2015 Impact sensitivity and the maximum heat of detonation J Mol Model 21 262

    Article  PubMed  Google Scholar 

  6. P Politzer JM Murray 2016 High performance, low sensitivity: conflicting or compatible? Propell Explos Pyrotech 41 414 425

    Article  CAS  Google Scholar 

  7. P Politzer JS Murray 2021 Some molecular and crystalline factors that affect the sensitivities of explosives D Mathieu Eds Molecular modeling of the sensitivities of energetic materials Elsevier Amsterdam in press

    Google Scholar 

  8. S Iyer N Slagg 1988 Molecular aspects in energetic materials JF Liebman A Greenberg Eds Structure and reactivity VCH New York 255 288

    Google Scholar 

  9. M Sučeska 1995 Test methods for explosives Springer-Verlag New York

    Book  Google Scholar 

  10. RM Doherty DS Watt 2008 Relationship between RDX properties and sensitivity Propell Explos Pyrotech 33 4 13

    Article  CAS  Google Scholar 

  11. D Mathieu 2017 Sensitivity of energetic materials: theoretical relationships to detonation performance and molecular structure Ind Eng Chem Res 56 8191 8201

    Article  CAS  Google Scholar 

  12. MJ Kamlet HG Adolph 1979 The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives, Propell Explos 4 30 34

    CAS  Google Scholar 

  13. CB Storm JR Stine JF Kramer 1990 Sensitivity relationships in energetic materials SN Bulusu Eds Chemistry and Physics of Energetic Materials Kluwer Dordrecht 605 639

    Chapter  Google Scholar 

  14. RW Armstrong CS Coffey VF DeVost WL Elban 1990 Crystal size dependence of impact sensitivities of cyclotrimethylenetrinitramine J Appl Phys 68 979 984

    Article  CAS  Google Scholar 

  15. RW Armstrong WL Elban 2006 Materials science and technology aspects of energetic (explosive) materials Mater Sci Technol 22 381 395

    Article  CAS  Google Scholar 

  16. Wilson WS, Bliss DE, Christian SL, Knight DJ (1990) Explosive properties of polynitroaromatics, NWC TP 7073, Naval Weapons Center, China Lake, CA

  17. BM Rice S Sahu FJ Owens 2002 Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules J Mol Struct (Theochem) 583 69 72

    Article  CAS  Google Scholar 

  18. Y Kohno K Maekawa T Tsuchioka T Hashizume A Imamura 1994 Relationship between the impact sensitivity and the electronic structures for the unique N-N bond in the HMX polymorphs Combust Flame 96 343 350

    Article  CAS  Google Scholar 

  19. JS Murray P Lane P Politzer 1998 Effects of strongly electron-attracting components on molecular surface electrostatic potentials: applications to predicting impact sensitivities of energetic molecules Mol Phys 93 187 194

    Article  CAS  Google Scholar 

  20. G Anders I Borges Jr 2011 Topological analysis of the molecular charge density and impact sensitivity: models of energetic materials J Phys Chem A 115 9055 9068

    Article  CAS  PubMed  Google Scholar 

  21. S Ye M Koshi 2006 Theoretical studies of energy transfer rates of secondary explosives J Phys Chem B 110 18515 18520

    Article  CAS  PubMed  Google Scholar 

  22. P Politzer JS Murray 2014 Detonation performance and sensitivity: a quest for balance JR Sabin Eds Advances in quantum chemistry: energetic materials 69 Academic Press New York 1 30

    Chapter  Google Scholar 

  23. TB Brill KJ James 1993 Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives Chem Rev 93 2667 2692

    Article  CAS  Google Scholar 

  24. Dlott DD (2003) Fast molecular processes in energetic materials, in: Energetic materials. Part 2. Detonation, combustion, Politzer P, Murray JS, eds, Elsevier, Amsterdam, pp 125–191

  25. LE Fried MR Manaa PF Pagoria RL Simpson 2001 Design and synthesis of energetic materials Annu Rev Mater Res 31 291 321

    Article  CAS  Google Scholar 

  26. SA Shackelford 2008 Role of thermochemical decompositions in energetic material initiation sensitivity and explosive performance Central Eur J Energ Mater 5 75 101

    CAS  Google Scholar 

  27. TM Klapötke 2017 Chemistry of high-energy materials 4 de Gruyter Berlin

    Book  Google Scholar 

  28. JJ Gilman 1995 Chemical reactions at detonation fronts in solids Philos Mag B 71 1057 1068

    Article  CAS  Google Scholar 

  29. EJ Reed JD Joannopoulos LE Fried 2000 Electronic excitations in shocked nitromethane Phys Rev B 62 16500 16510

    Article  CAS  Google Scholar 

  30. CJ Wu LH Yang LE Fried J Quenneville TJ Martinez 2003 Electronic structure of solid 1,3,5-triamino-2,4,6-trinitrobenzene under uniaxial compression: possible role of pressure-induced metallization in energetic materials Phys Rev B 67 235101

    Article  Google Scholar 

  31. H Zhang F Cheung F Zhao X-L Cheng 2009 Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials Internat J Quantum Chem 109 1547 1552

    Article  CAS  Google Scholar 

  32. W Zhu H Xiao 2010 First-principles band gap criterion for impact sensitivity of energetic crystals: a review Struct Chem 21 657 665

    Article  CAS  Google Scholar 

  33. NR Dhumai UN Patil SP Gejji 2004 Molecular electrostatic potentials and electron densities in nitroazacubanes J Chem Phys 120 749 755

    Article  Google Scholar 

  34. D Tsiaousis RW Munn 2005 Energy of charged states in the RDX crystal: trapping of charge-transfer pairs as a possible mechanism for initiating detonation J Chem Phys 122 184708

    Article  CAS  PubMed  Google Scholar 

  35. X-H Ju Y-M Li H-M Xiao 2005 Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes J Phys Chem A 109 934 938

    Article  CAS  PubMed  Google Scholar 

  36. X-L Zeng W-H Chen J-C Liu J-L Kan 2007 A theoretical study of five nitrates: electronic structure and bond dissociation energies J Mol Struct (Theochem) 810 47 51

    Article  CAS  Google Scholar 

  37. X-W Fan X-H Ju 2008 Theoretical studies on four-membered ring compounds with NF2, ONO2, N3 and NO2 groups J Comput Chem 29 505 513

    Article  CAS  PubMed  Google Scholar 

  38. X Zhang X Gong 2014 Theoretical studies on the stability, detonation performance and possibility of synthesis of the nitro derivatives of epoxyethane J Mol Model 20 2327

    Article  PubMed  Google Scholar 

  39. Y Huang Q Zhang L-W Zhan J Hou B-D Li 2020 Theoretical studies on oxadiazole-based layer stacking nitrogen-rich high-performance insensitive energetic materials J Mol Model 26 298

    Article  CAS  PubMed  Google Scholar 

  40. J Wu J Xu H Li J Zhang 2021 Theoretical study of effects of introducing varying linkages into bis-triazoles on energetic performance J Mol Model 27 24

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, revision A.1, Gaussian Inc., Wallingford, CT

  42. Baillou F, Dartyge JM, Spyckerelle C, Mala J (1993) Tenth Symposium (International) on Detonation, ADA 304862, Office of Naval Research, Arlington, VA, pp 816–823

  43. M Pospišil P Vávra MC Concha JS Murray P Politzer 2011 Sensitivity and the available free space per molecule in the unit cell J Mol Model 17 2569 2574

    Article  PubMed  Google Scholar 

  44. P Politzer JS Murray 2014 Impact sensitivity and crystal lattice compressibility/free space J Mol Model 20 2223

    Article  PubMed  Google Scholar 

  45. P Politzer JS Murray 1996 Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds; applications to impact sensitivities J Mol Struct 376 419 424

    Article  CAS  Google Scholar 

  46. BM Rice JJ Hare 2002 A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules J Phys Chem A 106 1770 1783

    Article  CAS  Google Scholar 

  47. JS Murray MC Concha P Politzer 2009 Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C-NO2/N-NO2 bond dissociation energies Mol Phys 107 89 97

    Article  CAS  Google Scholar 

  48. VI Pepekin BL Korsunskii AA Denisaev 2008 Initiation of solid explosives by mechanical impact Combus Explos Shock Waves 44 586 590

    Article  Google Scholar 

  49. S Zeman 2007 Sensitivities of high energy compounds Struct Bond 125 195 271

    Article  CAS  Google Scholar 

  50. RP Bell 1936 The theory of reactions involving proton transfer Proc Royal Soc London A 154 414 429

    Google Scholar 

  51. MG Evans M Polanyi 1936 Further considerations on the thermodynamics of chemical equilibria and reaction rates J Chem Soc Faraday Trans 32 1333 1360

    Article  CAS  Google Scholar 

  52. P Politzer JS Murray 2015 Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume J Mol Model 21 25

    Article  PubMed  Google Scholar 

  53. FA Bulat JS Murray P Politzer 2021 Identifying the most energetic electrons in a molecule: the highest occupied molecular orbital and the average local ionization energy Comput Theoret Chem 1199 113192

    Article  CAS  Google Scholar 

  54. RS Mulliken 1932 Electronic structures of polyatomic molecules and valence. II. General considerations Phys Rev 41 49 71

    Article  CAS  Google Scholar 

  55. SM Bachrach 2007 Computational organic chemistry Wiley-Interscience New York

    Book  Google Scholar 

  56. CJ Cramer 2002 Essentials of computational chemistry Wiley New York

    Google Scholar 

  57. ER Scerri 2000 Have orbitals really been observed? J Chem Ed 77 1492 1494

    Article  CAS  Google Scholar 

  58. T Clark 2017 Halogen bonds and σ-holes Faraday Disc 203 9 27

    Article  CAS  Google Scholar 

  59. T Clark MG Hicks 2020 Models of necessity Beilstein J Org Chem 16 1649 1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. E Schrödinger 1926 Quantisierung als Eigenwertproblem (Vierte Mitteilung) Ann Physik 81 109 1039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Politzer conceived of the topic of the short paper and wrote the first draft; J. S. Murray carried out computations, created plots, and proofread the final version of paper.

Corresponding author

Correspondence to Peter Politzer.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. Are HOMO–LUMO gaps reliable indicators of explosive impact sensitivity?. J Mol Model 27, 327 (2021). https://doi.org/10.1007/s00894-021-04956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04956-1

Keywords

Navigation