Skip to main content
Log in

Molecular electronics behaviour of l-aspartic acid using symmetrical metal electrodes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Protein-based electronics is one of the growing areas of bio-nanoelectronics, where novel electronic devices possessing distinctive properties are being fabricated using specific proteins. Furthermore, if the bio-molecule is analysed amidst different electrodes, intriguing properties are elucidated. This research article investigates the electron transport properties of l-aspartic acid (i.e. l-amino acid) bound to symmetrical electrodes of gold, silver, copper, platinum and palladium employing NEGF-DFT approach using self-consistent function. The theoretical work function of different electrodes is calculated using local density approximation and generalized gradient approximation approach. The calculated work function correlates well with the hole tunneling barrier and conductance of the molecular device, which further authenticate the coupling strength between molecule and electrode. Molecule under consideration also exhibits negative differential resistance region and rectification ratio with all the different electrodes, due to its asymmetrical structure. The molecular device using platinum electrodes exhibits the highest peak to valley ratio of 1.38 and rectification ratio of 3.20, at finite bias. The switching characteristics of different molecular device are justified with detailed transmission spectra and MPSH. These results indicate that l-aspartic acid and similar biomolecule can be vital to the growth of Proteotronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Amdursky N, Marchak D, Sepunaru L et al (2014) Electronic transport via proteins. Adv Mater. https://doi.org/10.1002/adma.201402304

    Article  PubMed  Google Scholar 

  2. Chi Q, Farver O, Ulstrup J (2005) Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0508257102

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alessandrini A, Facci P (2016) Electron transfer in nanobiodevices. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2016.03.028

    Article  Google Scholar 

  4. Blumberger J (2015) Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev 115:11191–11238. https://doi.org/10.1021/ACS.CHEMREV.5B00298

  5. Baldacchini C, Bizzarri AR, Cannistraro S (2016) Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates. Eur Polym J 83:407–427. https://doi.org/10.1016/J.EURPOLYMJ.2016.04.030

  6. Livshits GI, Stern A, Rotem D et al (2014) Long-range charge transport in single G-quadruplex DNA molecules. Nat Nanotechnol. https://doi.org/10.1038/nnano.2014.246

    Article  PubMed  Google Scholar 

  7. Xiang L, Palma JL, Bruot C et al (2015) Intermediate tunnelling-hopping regime in DNA charge transport. Nat Chem. https://doi.org/10.1038/nchem.2183

    Article  PubMed  Google Scholar 

  8. Macchia E, Alberga D, Manoli K et al (2016) Organic bioelectronics probing conformational changes in surface confined proteins. Sci Rep. https://doi.org/10.1038/srep28085

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baîldea I (2013) Important insight into electron transfer in single-molecule junctions based on redox metalloproteins from transition voltage spectroscopy. J Phys Chem C. https://doi.org/10.1021/jp408873c

    Article  Google Scholar 

  10. Yamana K (2017) Gating electrical transport through DNA. DNA Supramol Chem Nanotechnol 79–93. https://doi.org/10.1002/9781118696880.CH2.1

  11. Maruccio G (2012) Protein transistors strike gold. Nat Nanotechnol 73(7):147–148. https://doi.org/10.1038/nnano.2012.27

  12. Rinaldi R, Biasco A, Maruccio G et al (2002) Solid-state molecular rectifier based on self-organized metalloproteins. Adv Mater. https://doi.org/10.1002/1521-4095(20021016)14:20%3c1453::AID-ADMA1453%3e3.0.CO;2-C

    Article  Google Scholar 

  13. Alfinito E, Reggiani L, Pousset J (2015) Proteotronics: electronic devices based on proteins. Lect Notes Electr Eng 319:3–7. https://doi.org/10.1007/978-3-319-09617-9_1

  14. Wierzbinski E, Venkatramani R, Davis KL et al (2013) The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. ACS Nano. https://doi.org/10.1021/nn401321k

    Article  PubMed  Google Scholar 

  15. Venkatramani R, Wierzbinski E, Waldeck DH, Beratan DN (2014) Breaking the simple proportionality between molecular conductances and charge transfer rates. Faraday Discuss. https://doi.org/10.1039/c4fd00106k

    Article  PubMed  Google Scholar 

  16. Ruiz MP, Aragonès AC, Camarero N, et al (2017) Bioengineering a single-protein junction. J Am Chem Soc 139:15337–15346. https://doi.org/10.1021/JACS.7B06130

  17. Bostick CD, Mukhopadhyay S, Pecht I, et al (2018) Protein bioelectronics: a review of what we do and do not know. Reports Prog Phys 81:026601. https://doi.org/10.1088/1361-6633/AA85F2

  18. Wang H, Liu F, Dong T et al (2018) Charge-transfer knowledge graph among amino acids derived from high-throughput electronic structure calculations for protein database. ACS Omega. https://doi.org/10.1021/acsomega.8b00336

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oh S, Rubin JB, Bennett MVL et al (1999) Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J Gen Physiol. https://doi.org/10.1085/jgp.114.3.339

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ing NL, El-Naggar MY, Hochbaum AI (2018) Going the distance: long-range conductivity in protein and peptide bioelectronic materials. J Phys Chem B 122:10403–10423. https://doi.org/10.1021/ACS.JPCB.8B07431

  21. Metzger RM (2003) One-molecule-thick devices: rectification of electrical current by three Langmuir-Blodgett monolayers. Synth Met 137:1499–1501. https://doi.org/10.1016/S0379-6779(02)01202-X

  22. Krzeminski C, Delerue C, Allan G et al (2001) Theory of electrical rectification in a molecular monolayer. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.64.085405

    Article  Google Scholar 

  23. Reichert J, Ochs R, Beckmann D et al (2002) Driving current through single organic molecules. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.88.176804

    Article  PubMed  Google Scholar 

  24. Ganji MD, Aghaie H, Gholami MR (2008) Theoretical study of the electron transport through the cysteine amino acid nanomolecular wire. Int J Nanosci. https://doi.org/10.1142/s0219581x08005225

    Article  Google Scholar 

  25. Zhou YH, Zheng XH, Xu Y, Zeng ZY (2006) Current rectification by asymmetric molecules: an ab initio study. J Chem Phys. https://doi.org/10.1063/1.2409689

    Google Scholar 

  26. Sikri G, Sawhney RS (2020) First principle approach to elucidate transport properties through l-glutamic acid-based molecular devices using symmetrical electrodes. J Mol Model. https://doi.org/10.1007/s00894-020-4323-x

    Article  PubMed  Google Scholar 

  27. Chothia C (1991) Asymmetry in protein structures. Ciba Found Symp 162. https://doi.org/10.1002/9780470514160.CH4

  28. Kojić-Prodić B, Štefanić Z (2010) Symmetry versus asymmetry in the Molecules of life: homomeric protein assemblies. Symmetry (Basel). https://doi.org/10.3390/sym2020884

    Article  Google Scholar 

  29. Honey CR, Miljkovic Z, Macdonald JF (1985) Ketamine and phencyclidine cause a voltage-dependent block of responses to l-aspartic acid. Neurosci Lett. https://doi.org/10.1016/0304-3940(85)90414-8

    Article  PubMed  Google Scholar 

  30. Teschke O, Soares DM (2016) Chiral asymmetric structures in aspartic acid and valine crystals assessed by atomic force microscopy. Langmuir. https://doi.org/10.1021/acs.langmuir.6b00092

    Article  PubMed  Google Scholar 

  31. Cordes M, Köttgen A, Jasper C et al (2008) Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via “stepping stones.” Angew Chemie - Int Ed. https://doi.org/10.1002/anie.200705588

    Article  Google Scholar 

  32. Zotti LA, Bednarz B, Hurtado-Gallego J et al (2019) Can one define the conductance of amino acids? Biomolecules. https://doi.org/10.3390/biom9100580

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ganji MD (2009) Density functional theory based treatment of amino acids adsorption on single-walled carbon nanotubes. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2008.11.021

    Article  Google Scholar 

  34. Li WQ, Huang B, Huang ML et al (2017) Detecting electron transport of amino acids by using conductance measurement. Sensors (Switzerland). https://doi.org/10.3390/s17040811

    Article  PubMed Central  Google Scholar 

  35. Zhao Y, Ashcroft B, Zhang P et al (2014) Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat Nanotechnol. https://doi.org/10.1038/nnano.2014.54

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ohshiro T, Tsutsui M, Yokota K et al (2014) Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat Nanotechnol. https://doi.org/10.1038/nnano.2014.193

    Article  PubMed  Google Scholar 

  37. An YP, Yang CL, Wang MS et al (2010) Ab initio investigations of the charge transport properties of endohedral M@C20 (M = Na and K) metallofullerenes. Chinese Phys B. https://doi.org/10.1088/1674-1056/19/11/113402

    Article  Google Scholar 

  38. Shah A, Adhikari B, Martic S, et al (2015) Electron transfer in peptides. Chem Soc Rev 44:1015–1027. https://doi.org/10.1039/C4CS00297K

  39. Zotti LA, Cuevas JC (2018) Electron transport through homopeptides: are they really good conductors? ACS Omega. https://doi.org/10.1021/acsomega.7b01917

    Article  PubMed  PubMed Central  Google Scholar 

  40. Minoura N (1998) Nonlinear resistance behavior of current-voltage characteristics in polypeptide membranes with conformational transition. Langmuir. https://doi.org/10.1021/la970666f

    Article  Google Scholar 

  41. Malaspina T, Fileti EE, Colherinhas G (2017) Elucidating the stability of bolaamphiphilic polypeptide nanosheets using atomistic molecular dynamics. Phys Chem Chem Phys. https://doi.org/10.1039/c7cp06284b

    Article  PubMed  Google Scholar 

  42. De Ferra F, Rodriguez F, Tortora O, et al (1997) Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem. https://doi.org/10.1074/jbc.272.40.25304

  43. Deng XQ, Zhou JC, Zhang ZH et al (2009) Electrode metal dependence of the rectifying performance for molecular devices: a density functional study. Appl Phys Lett 95:103113. https://doi.org/10.1063/1.3205114

    Article  CAS  Google Scholar 

  44. Cho Y, Kim WY, Kim KS (2009) Effect of electrodes on electronic transport of molecular electronic devices. J Phys Chem A 113:4100–4104. https://doi.org/10.1021/jp810467q

    Article  CAS  PubMed  Google Scholar 

  45. Parashar S, Srivastava P, Pattanaik M (2013) Electrode materials for biphenyl-based rectification devices. In: Journal of Molecular Modeling. Springer, pp 4467–4475

  46. Natori K (2015) Nonideality of drain electrode and ballistic performance of MOSFET. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.54.044102

    Article  Google Scholar 

  47. Landauer R (2010) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev. https://doi.org/10.1147/rd.13.0223

    Article  Google Scholar 

  48. Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25:4845–4867. https://doi.org/10.1002/ADMA.201301589

  49. Mathew PT, Fang F (2018) Advances in molecular electronics: a brief review. Engineering

  50. Böhler T, Grebing J, Mayer-Gindner A et al (2004) Mechanically controllable break-junctions for use as electrodes for molecular electronics. Nanotechnology. https://doi.org/10.1088/0957-4484/15/7/054

    Article  Google Scholar 

  51. Burke K (2016) Improving electronic structure calculations. Physics (College Park Md). https://doi.org/10.1103/physics.9.108

    Article  Google Scholar 

  52. Van Mourik T, Bühl M, Gaigeot MP (2014) Density functional theory across chemistry, physics and biology. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2012.0488

    Article  Google Scholar 

  53. Smidstrup S, Markussen T, Vancraeyveld P et al (2020) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter 32:15901

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  55. Xu X, Goddard WA (2004) The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J Chem Phys. https://doi.org/10.1063/1.1771632

    Google Scholar 

  56. Kaschner R, Hohl D (1998) Density functional theory and biomolecules: a study of glycine, alanine, and their oligopeptides. J Phys Chem A. https://doi.org/10.1021/jp980975u

    Article  Google Scholar 

  57. Zhang Z, Xu Z, Yang Z et al (2013) The stabilization effect of dielectric constant and acidic amino acids on arginine-arginine (Arg-Arg) pairings: database survey and computational studies. J Phys Chem B. https://doi.org/10.1021/jp4001658

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen X, Gao P, Guo L, Zhang S (2015) Graphdiyne as a promising material for detecting amino acids. Sci Rep. https://doi.org/10.1038/srep16720

    Article  PubMed  PubMed Central  Google Scholar 

  59. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B. https://doi.org/10.1103/PhysRevB.43.1993

    Article  Google Scholar 

  60. De Waele S, Lejaeghere K, Sluydts M, Cottenier S (2016) Error estimates for density-functional theory predictions of surface energy and work function. Phys Rev B. https://doi.org/10.1103/PhysRevB.94.235418

    Article  Google Scholar 

  61. Niemantsverdriet JW (2007) Appendix: metal surfaces and chemisorption. Spectrosc Catal 297–320. https://doi.org/10.1002/9783527611348.app1

  62. Derry GN, Kern ME, Worth EH (2015) Recommended values of clean metal surface work functions. J Vac Sci Technol A Vacuum, Surfaces, Film. https://doi.org/10.1116/1.4934685

    Article  Google Scholar 

  63. Chelvayohan M, Mee CHB (1982) Work function measurements on (110), (100) and (111) surfaces of silver. J Phys C Solid State Phys. https://doi.org/10.1088/0022-3719/15/10/029

    Article  Google Scholar 

  64. Patra A, Bates JE, Sun J, Perdew JP (2017) Properties of real metallic surfaces: effects of density functional semilocality and van der Waals nonlocality. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1713320114

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bocquet ML, Rappe AM, Dai HL (2005) A density functional theory study of adsorbate-induced work function change and binding energy: olefins on Ag(111). Mol Phys 103:883–890. https://doi.org/10.1080/00268970412331333609

    Article  CAS  Google Scholar 

  66. Sun J, Remsing RC, Zhang Y et al (2016) Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat Chem. https://doi.org/10.1038/nchem.2535

    Article  PubMed  Google Scholar 

  67. Giese TJ, York DM (2010) Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations. J Chem Phys. https://doi.org/10.1063/1.3515479

    Google Scholar 

  68. Jakobi K (2005) 3.1.2.4 Work function data. In: Electronic and Vibrational Properties. Springer-Verlag, pp 56–68

  69. Pescia D, Meier F (1982) Spin polarized photoemission from gold using circularly polarized light. Surf Sci 117:302–309. https://doi.org/10.1016/0039-6028(82)90512-X

    Article  CAS  Google Scholar 

  70. Fall C, Binggeli N, Baldereschi A (2000) Work-function anisotropy in noble metals: contributions from d states and effects of the surface atomic structure. Phys Rev B - Condens Matter Mater Phys 61:8489–8495. https://doi.org/10.1103/PhysRevB.61.8489

    Article  CAS  Google Scholar 

  71. Singh-Miller NE, Marzari N (2009) Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys Rev B - Condens Matter Mater Phys 80:235407. https://doi.org/10.1103/PhysRevB.80.235407

    Article  CAS  Google Scholar 

  72. Farnsworth HE, Winch RP (1940) Photoelectric work functions of (100) and (111) faces of silver single crystals and their contact potential difference. Phys Rev 58:812–819. https://doi.org/10.1103/PhysRev.58.812

    Article  CAS  Google Scholar 

  73. Tran R, Li XG, Montoya JH et al (2019) Anisotropic work function of elemental crystals. Surf Sci 687:48–55. https://doi.org/10.1016/j.susc.2019.05.002

    Article  CAS  Google Scholar 

  74. Haas GA, Thomas RE (1977) Work function and secondary emission studies of various Cu crystal faces. J Appl Phys 48:86–93. https://doi.org/10.1063/1.323329

    Article  CAS  Google Scholar 

  75. Salmern M, Ferrer S, Jazzar M, Somorjai GA (1983) Photoelectron-spectroscopy study of the electronic structure of Au and Ag overlayers on Pt(100), Pt(111), and Pt(997) surfaces. Phys Rev B 28:6758–6765. https://doi.org/10.1103/PhysRevB.28.6758

    Article  Google Scholar 

  76. Da Silva JLF, Stampfl C, Scheffler M (2006) Converged properties of clean metal surfaces by all-electron first-principles calculations. Surf Sci 600:703–715. https://doi.org/10.1016/j.susc.2005.12.008

    Article  CAS  Google Scholar 

  77. Fischer R, Schuppler S, Fischer N et al (1993) Image states and local work function for Ag/Pd(111). Phys Rev Lett 70:654–657. https://doi.org/10.1103/PhysRevLett.70.654

    Article  CAS  PubMed  Google Scholar 

  78. Engelkes VB, Beebe JM, Frisbie CD (2004) Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance. J Am Chem Soc 126:14287–14296. https://doi.org/10.1021/ja046274u

    Article  CAS  PubMed  Google Scholar 

  79. Xie Z, Bâldea I, Smith CE et al (2015) Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 9:8022–8036. https://doi.org/10.1021/acsnano.5b01629

    Article  CAS  PubMed  Google Scholar 

  80. Metzger RM (2006) Unimolecular rectifiers: present status. Chem Phys 326:176–187. https://doi.org/10.1016/J.CHEMPHYS.2006.02.026

    Article  CAS  Google Scholar 

  81. Brady AC, Hodder B, Martin AS et al (1999) Molecular rectification with M|(D-σ-A LB film)|M junctions. J Mater Chem 9:2271–2275. https://doi.org/10.1039/A902107H

    Article  CAS  Google Scholar 

  82. Stadler R, Jacobsen KW (2006) Fermi level alignment in molecular nanojunctions and its relation to charge transfer. Phys Rev B 74:161405. https://doi.org/10.1103/PhysRevB.74.161405

    Article  CAS  Google Scholar 

  83. Van Wees BJ, Van Houten H, Beenakker CWJ et al (1988) Quantized conductance of point contacts in a two-dimensional electron gas. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.60.848

    Article  PubMed  Google Scholar 

  84. van Houten H, Beenakker CWJ, Staring AAM (1992) Coulomb-blockade oscillations in quantum wires and dots

  85. Yacoby A, Stormer HL, Wingreen NS et al (1996) Nonuniversal conductance quantization in quantum wires. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.77.4612

    Article  PubMed  Google Scholar 

  86. Apel W, Rice TM (1982) Combined effect of disorder and interaction on the conductance of a one-dimensional fermion system. Phys Rev B. https://doi.org/10.1103/PhysRevB.26.7063

    Article  Google Scholar 

  87. Wang K, Xu B (2017) Modulation and control of charge transport through single-molecule junctions. Top Curr Chem 375. https://doi.org/10.1007/s41061-017-0105-z

  88. Xue Y, Ratner MA (2003) Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys Rev B 68:115406. https://doi.org/10.1103/PhysRevB.68.115406

    Article  CAS  Google Scholar 

  89. Xue Y, Ratner MA (2005) Theoretical principles of single-molecule electronics: a chemical and mesoscopic view. Int J Quantum Chem 102:911–924. https://doi.org/10.1002/qua.20484

    Article  CAS  Google Scholar 

  90. Beebe JM, Engelkes VB, Miller LL, Frisbie CD (2002) Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function. J Am Chem Soc 124:11268–11269. https://doi.org/10.1021/ja0268332

    Article  CAS  PubMed  Google Scholar 

  91. Bingham RC (1976) The stereochemical consequences of electron delocalization in extended π systems. An interpretation of the Cis effect exhibited by 1,2-disubstituted ethylenes and related phenomena. J Am Chem Soc. https://doi.org/10.1021/ja00418a036

  92. Ludoph B, van Ruitenbeek JM (2000) Conductance fluctuations as a tool for investigating the quantum modes in atomic-size metallic contacts. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.61.2273

    Article  Google Scholar 

  93. Elbing M, Ochs R, Koentopp M et al (2005) A single-molecule diode. Proc Natl Acad Sci U S A 102:8815–8820. https://doi.org/10.1073/pnas.0408888102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Díez-Pérez I, Hihath J, Lee Y et al (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1:635–641. https://doi.org/10.1038/nchem.392

    Article  CAS  PubMed  Google Scholar 

  95. Lörtscher E, Gotsmann B, Lee Y et al (2012) Transport properties of a single-molecule diode. ACS Nano 6:4931–4939. https://doi.org/10.1021/nn300438h

    Article  CAS  PubMed  Google Scholar 

  96. Batra A, Darancet P, Chen Q et al (2013) Tuning rectification in single-molecular diodes. Nano Lett 13:6233–6237. https://doi.org/10.1021/nl403698m

    Article  CAS  PubMed  Google Scholar 

  97. Min Y, Zhuang GC, Yao KL (2020) Multiple negative differential resistance in nitro-based two-probe molecular junction. Phys Lett Sect A Gen At Solid State Phys. https://doi.org/10.1016/j.physleta.2020.126720

    Article  Google Scholar 

  98. Dagar P, Bera J, Vyas G, Sahu S (2019) Bidirectional multiple negative differential resistance (BM-NDR): an interplay between interface resistance and redox reaction. Org Electron. https://doi.org/10.1016/j.orgel.2019.05.031

    Article  Google Scholar 

  99. Larade B, Bratkovsky AM (2003) Current rectification by simple molecular quantum dots: an ab initio study. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.68.235305

    Article  Google Scholar 

  100. Cahn RS, Ingold CK, Prelog V (1956) The specification of asymmetric configuration in organic chemistry. Experientia. https://doi.org/10.1007/BF02157171

    Article  Google Scholar 

  101. Zhao J, Yu C, Wang N, Liu H (2010) Molecular rectification based on asymmetrical molecule-electrode contact. J Phys Chem C. https://doi.org/10.1021/jp905713a

    Article  Google Scholar 

  102. Do VN, Dollfus P (2010) Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J Appl Phys 107:063705. https://doi.org/10.1063/1.3340834

  103. Kim KH, Park HY, Shim J et al (2020) A multiple negative differential resistance heterojunction device and its circuit application to ternary static random access memory. Nanoscale Horizons. https://doi.org/10.1039/c9nh00631a

    Article  PubMed  Google Scholar 

  104. Zhou Y, Qiu N, Li R et al (2016) Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device. Phys Lett Sect A Gen At Solid State Phys. https://doi.org/10.1016/j.physleta.2016.01.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, writing-original draft preparation: Gaurav Sikri.

Formal analysis and investigation, writing-review and editing, Supervision: Ravinder Singh Sawhney.

Corresponding author

Correspondence to Gaurav Sikri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.56 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikri, G., Sawhney, R.S. Molecular electronics behaviour of l-aspartic acid using symmetrical metal electrodes. J Mol Model 27, 335 (2021). https://doi.org/10.1007/s00894-021-04936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04936-5

Keywords

Navigation