Skip to main content
Log in

Fundamental frequency analysis of endohedrally functionalized carbon nanotubes with metallic nanowires: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The endohedral functionalization of carbon nanotubes (CNTs) with nanowires (NWs), i.e., NWs@CNTs, has been the center of attention in a lot of research due to the applications of NWs@CNTs in nanoelectronic devices, heterogeneous catalysis, and electromagnetic wave absorption. To this end, based on the classical molecular dynamics (MD) simulations, the effect of four pentagonal structures of encapsulated metallic nanowires (mNWs), namely the eclipsed pentagon (E), the deformed staggered pentagon (Ds), staggered pentagon (S), and staggered pentagonal structure without the monatomic chain passing through the centers of the parallel pentagons (R) configurations on the vibrational behavior of CNTs, is investigated. Also, the effects of geometrical parameters such as length and radius of CNTs on the natural frequencies of simulated models are explored. The results illustrate that by increasing the length, the natural frequency of pure CNTs and mNWs@CNTs decreases. In a similar length, mNWs@CNTs possess lower natural frequencies compared to the pure CNTs. According to the results, the highest and lowest natural frequencies are calculated by inserting the S structure of sodium NW and Ds structure of aluminum NW inside their proper armchair CNT, i.e., Na-S NW@ (9,9) CNT and Al-Ds NW@ (7,7) CNT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code availability

The code cannot be shared at this time as it is forms part of an ongoing study.

References

  1. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  2. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    Article  CAS  Google Scholar 

  3. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  CAS  Google Scholar 

  4. Zang X, Zhou Q, Chang J, Liu Y, Lin L (2015) Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron Eng 132:192–206

    Article  CAS  Google Scholar 

  5. Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503(4):115–163

    Article  CAS  Google Scholar 

  6. Ajori S, Ansari R, Sadeghi F (2018) Molecular dynamics study of gigahertz nanomechanical oscillators based on an ion inside a series of electrically charged carbon nanotubes. Eur J Mech A Solids 69:45–54

    Article  Google Scholar 

  7. Ajori S, Ansari R, Haghighi S (2018) A molecular dynamics study on the buckling behavior of cross-linked functionalized carbon nanotubes under physical adsorption of polymer chains. Appl Surf Sci 427:704–714

    Article  CAS  Google Scholar 

  8. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037

    Article  CAS  PubMed  Google Scholar 

  9. Ajori S, Ameri A, Ansari R (2019) On the mechanical stability and buckling analysis of carbon nanotubes filled with ice nanotubes in the aqueous environment: a molecular dynamics simulation approach. J Mol Graph Model 89:74–81

    Article  CAS  PubMed  Google Scholar 

  10. Ansari R, Ajori S, Ameri A (2015) On the vibrational characteristics of single-and double-walled carbon nanotubes containing ice nanotube in aqueous environment. Appl Phys A 121(1):223–232

    Article  CAS  Google Scholar 

  11. Holt JK (2009) Carbon nanotubes and nanofluidic transport. Adv Mater 21(35):3542–3550

    Article  CAS  Google Scholar 

  12. Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108(12):5014–5034

    Article  CAS  PubMed  Google Scholar 

  13. Satishkumar BC, Govindaraj A, Nath M, Rao CN (2000) Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem 10(9):2115–2119

    Article  CAS  Google Scholar 

  14. Pan Z, Lai HL, Au FC, Duan X, Zhou W, Shi W, Wang N, Lee CS, Wong NB, Lee ST, Xie SS (2000) Oriented silicon carbide nanowires: synthesis and field emission properties. Adv Mater 12(16):1186–1190

    Article  CAS  Google Scholar 

  15. Liu L, Mu S, Xie S, Zhou W, Song L, Liu D, Luo S, Xiang Y, Zhang Z, Zhao X, Ma W (2006) Template synthesis, characterization and magnetic property of Fe nanowires-filled amorphous carbon nanotubes array. J Phys D Appl Phys 39(18):3939

    Article  CAS  Google Scholar 

  16. Arcidiacono S, Walther JH, Poulikakos D, Passerone D, Koumoutsakos P, Solidification of gold nanoparticles in carbon nanotubes. Phy Rev Lett, 2005; 94(10):105502.

  17. Parsapour H, Ajori S, Ansari R, Haghighi S (2019) Tensile characteristics of single-walled carbon nanotubes endohedrally decorated with gold nanowires: a molecular dynamics study. Diam Relat Mater 1(92):117–129

    Article  Google Scholar 

  18. Ajori S, Parsapour H, Ansari R (2018) Vibrational analysis of single-walled carbon nanotubes filled with gold nanowires using MD simulations. Phys E 1(104):327–332

    Article  Google Scholar 

  19. Ajori S, Parsapour H, Ansari R. Stability analysis of endohedrally functionalized carbon nanotubes with pentagonal metallic nanowires: a molecular dynamics simulation approach. Mater Res Express. 2019 Jan 11.

  20. Ajori S, Parsapour H, Ansari R, Haghighi S (2020) Effect of metallic nanowire encapsulation on the tensile behavior of single-walled carbon nanotubes: a molecular dynamics study. Eur Phys J D 74:1–9

    Article  Google Scholar 

  21. Ajori S, Parsapour H, Ansari R (2020) A molecular dynamics study on the buckling behavior of single-walled carbon nanotubes filled with gold nanowires. J Mol Model 26(8):1–8

    Article  Google Scholar 

  22. Wang L, Han H. Vibration and buckling analysis of piezoelectric nanowires based on surface energy density. Acta Mechanica Solida Sinica. 2021 Feb 1:1–2. https://doi.org/10.1007/s10338-020-00210-y (in press)

  23. Leonhardt A, Ritschel M, Kozhuharova R, Graff A, Mühl T, Huhle R, Mönch I, Elefant D, Schneider CM (2003) Synthesis and properties of filled carbon nanotubes. Diam Relat Mater 12(3):790–793

    Article  CAS  Google Scholar 

  24. Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Walton DR, Terrones M, Terrones H, Redlich P, Rühle M, Escudero R (1999) Enhanced magnetic coercivities in Fe nanowires. Appl Phys Lett 75(21):3363–3365

    Article  CAS  Google Scholar 

  25. Dai H, Wong EW, Lu YZ, Fan S, Lieber CM (1995) Synthesis and characterization of carbide nanorods. Nature 375(6534):769–772

    Article  CAS  Google Scholar 

  26. Guerret-Piecourt C, Le Bouar Y, Loiseau A, Pascard H (1994) Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372(6508):761

    Article  CAS  Google Scholar 

  27. Ajayan PM (1993) Capillarity-induced filling of carbon nanotubes. Nature 361(6410):333–334

    Article  CAS  Google Scholar 

  28. Demoncy N, Stephan O, Bran N, Colliex C, Loiseau A, Pascard H (1999) Sulfur: the key for filling carbon nanotubes with metals. Synth Met 103(1–3):2380–2383

    Article  CAS  Google Scholar 

  29. Schnitzler MC, Oliveira MM, Ugarte D, Zarbin AJ (2003) One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem Phys Lett 381(5):541–548

    Article  CAS  Google Scholar 

  30. Bao JI, Tie CH, Xu ZH, Suo ZH, Zhou QU, Hong J (2002) A facile method for creating an array of metal-filled carbon nanotubes. Adv Mater 14(20):1483–1486

    Article  CAS  Google Scholar 

  31. Bao J, Zhou Q, Hong J, Xu Z (2002) Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes. Appl Phys Lett 81(24):4592–4594

    Article  CAS  Google Scholar 

  32. Pradhan BK, Kyotani T, Tomita A (1999) Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem Commun 14:1317–1318

    Article  Google Scholar 

  33. Tsang SC, Chen YK, Harris PJ, Green ML, A simple chemical method of opening and filling carbon nanotubes.

  34. Kamalakaran R, Lupo F, Grobert N, Lozano-Castello D, Jin-Phillipp NY, Rühle M (2003) In-situ formation of carbon nanotubes in an alumina–nanotube composite by spray pyrolysis. Carbon 41(14):2737–2741

    Article  CAS  Google Scholar 

  35. Sen P, Gülseren O, Yildirim T, Batra IP, Ciraci S, Pentagonal nanowires: a first-principles study of the atomic and electronic structure. Physical review B, 2002; 65(23):235433.

  36. Hoshi T, Fujiwara T, Domain boundary formation in helical multishell gold nanowires. Journal of Physics: Condensed Matter, 2009; 21(27):272201.

  37. Wang YX, Pan ZY, Zhu BE, Xiao Y, Guo SH, Au nanowires encapsulated in carbon nanotubes: structure, melting and mechanical properties. In Materials Science Forum 2011 (Vol. 688, pp. 277–285). Trans Tech Publications.

  38. Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289(5479):606–608

    Article  CAS  PubMed  Google Scholar 

  39. Eltaher MA, Agwa MA (2016) Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model. Sens Actuators, A 246:9–17

    Article  CAS  Google Scholar 

  40. Ajori S, Ansari R, Haghighi S (2019) Small strain effect on the mechanical vibration behavior of cross-linked functionalized carbon nanotubes with polyethylene: a molecular-dynamics study. EPL (Europhysics Letters) 125(4):43001

    Article  Google Scholar 

  41. Kwon OK, Kim KS, Park J, Kang JW (2013) Molecular dynamics modeling and simulations of graphene-nanoribbon-resonator-based nanobalance as yoctogram resolution detector. Comput Mater Sci 67:329–333

    Article  CAS  Google Scholar 

  42. Ansari, R., Gholami, R. and Ajori, S., 2013. Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. J Vib Acoust 135(5):051016

  43. Zhang YY, Wang CM, Tan VBC (2009) Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv Appl Math Mech 1(1):89–106

    Google Scholar 

  44. Zhan H, Gu Y, Park HS (2012) Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements. Nanoscale 4(21):6779–6785

    Article  CAS  PubMed  Google Scholar 

  45. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  46. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983

    Article  CAS  Google Scholar 

  47. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys: Condens Matter 14(4):783

    CAS  Google Scholar 

  48. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Article  CAS  Google Scholar 

  49. Lennard-Jones JE, Hall GG. JE Lennard-Jones Proc. In Roy. Soc. Lond. A 1924 (Vol. 106, p. 441).

  50. Arkundato, A., Su'ud, Z., Hasan, M., & Celino, M. (2015). Molecular dynamics simulation of corrosion mitigation of iron in lead-bismuth eutectic using nitrogen as corrosion inhibitor. In Journal of Physics: Conference Series (Vol. 622, No. 1, p. 012009). IOP Publishing.

  51. Zheng Y, Zaoui A (2011) How water and counterions diffuse into the hydrated montmorillonite. Solid State Ion 203(1):80–85

    Article  CAS  Google Scholar 

  52. Lv J, Bai M, Cui W, Li X (2011) The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system. Nanoscale Res Lett 6(1):200

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cao J, Wang Y, Shi J, Chai J, Cai K (2018) Initial relative position influencing self-assembly of a black phosphorus ribbon on a CNT. Int J Mol Sci 19(12):4085

    Article  PubMed Central  Google Scholar 

  54. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    Article  CAS  Google Scholar 

  55. Ajori S, Ansari R, Darvizeh M (2016) On the vibrational behavior of single-and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study. J Mol Model 22(3):1–8

    Article  Google Scholar 

  56. Beu TA, Farcaş A (2016) Tight-binding normal mode analysis of suspended single-wall carbon nanotubes. EPL (Europhysics Letters) 113(3):37004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Ajori developed the idea and methodology. H. Parsapour and S. Haghighi performed simulations and analysis data together with S. Ajori. Finally, all authors contributed in preparing the final version of the manuscript.

Corresponding authors

Correspondence to S. Ajori or R. Ansari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajori, S., Haghighi, S., Parsapour, H. et al. Fundamental frequency analysis of endohedrally functionalized carbon nanotubes with metallic nanowires: a molecular dynamics study. J Mol Model 27, 313 (2021). https://doi.org/10.1007/s00894-021-04933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04933-8

Keywords

Navigation