Skip to main content

Advertisement

Log in

Application of borophene as catechol sensor: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The efficacy of borophene (BP) as catechol (CC) sensor was explored using density functional theory (DFT) method. All calculations were performed at B3LYP level of theory and 6–31 + G(d) basis set employing the dispersion correction term of Grimme to consider dispersion interactions. The CC molecule is adsorbed on top of BP horizontally with the adsorption energy (Eads) of about − 13.5 kcal·mol−1. The HOMO and LUMO levels of nanosheet destabilize by about 0.36 and 0.14 eV, respectively, going from bare BP to BP-CC complex. Therefore, the Eg value decreases by about 10.5% upon adsorption process, which is a reasonable energy gap change for detection of CC. The negligible difference between the work function values (Φ, defined as the minimum amount of the energy needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface) of BP and its complex with CC indicates that the BP sheet is not an appropriate Φ-type sensor (in these sensors, adsorption of a chemical changes the gate voltage and produces an electrical signal that leads to the detection of chemical agent) for CC detection. The electrical conductivity of BP becomes 72 times higher after CC adsorption. The time needed for CC desorption from BP sheet is 7.6 ns, based on conventional transition state theory, showing that BP benefits from a short recovery time. The effect of CC concentration was explored by adsorption of 2 and 3 CC molecules on top of BP nanosheet and the results showed that the sensor response does not change by increasing the CC concentration. Also, the effect of lateral dimensions of BP on the adsorption energy was explored and it was shown that Eads increases by enlargement of the nanosheet.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be sent to the editorial office if needed.

Code availability

We have used GAMESS software package, which is a free software.

References

  1. I.W.G.o.t.E.o.C.R.t. Humans, I.A.f.R.o. Cancer, W.H. Organization (1999) Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide: other compounds reviewed in plenary sessions. IARC

  2. Sun M, Yan L, Zhang L, Song L, Guo J, Zhang H (2019) Process Biochem 78:108

    Article  CAS  Google Scholar 

  3. Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N (2021) Frontiers in Cell and Developmental Biology 9:357

    Google Scholar 

  4. Guo Q, Zhang M, Zhou G, Zhu L, Feng Y, Wang H, Zhong B, Hou H (2016) J Electroanal Chem 760:15

    Article  CAS  Google Scholar 

  5. Abisegapriyan K, Raj NPMJ, Alluri NR, Chandrasekhar A, Kim S-J (2020) Sensors and Actuators B: Chemical 320:128417

    Article  Google Scholar 

  6. Pan X, Wei J, Zou M, Chen J, Qu R, Wang Z (2021) Water Res 194:116916

  7. Yin H, Zhang Q, Zhou Y, Ma Q, Zhu L, Ai S (2011) Electrochim Acta 56:2748

    Article  CAS  Google Scholar 

  8. Zou M, Qi Y, Qu R, Al-Basher G, Pan X, Wang Z, Huo Z, Zhu F (2021) Sci Total Environ 771:144743

    Article  CAS  PubMed  Google Scholar 

  9. Cao W, Wu N, Qu R, Sun C, Huo Z, Ajarem JS, Allam AA, Wang Z, Zhu F (2021) Environ Sci Pollut Res 1

  10. Sun M, Hou B, Wang S, Zhao Q, Zhang L, Song L, Zhang H (2021) Environ Sci: Water Res Technol 7:396

    CAS  Google Scholar 

  11. Purchase I (1978) Br J Cancer 37:649

    Article  PubMed Central  Google Scholar 

  12. Sun T, Song L, Ma J, Yu H, Zhou S, Wang S, Li T (2020) Biocell 44:479

    Article  CAS  Google Scholar 

  13. Ileanwa AC, Atahchegbe EM, Ekule AA (2020) Central Asian Journal of Environmental Science and Technology Innovation 1:143

  14. Liu Y, Li A, Xie G, Liu G, Hei X (2021) Interdisciplinary Sciences: Computational Life Sciences 1

  15. Zhao H, Liu X, Yu L, Lin S, Zhang C, Xu H, Leng Z, Huang W, Lei J, Li T (2021) Molecular Therapy-Nucleic Acids 23:667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asgari R (2021) Central Asian Journal of Medical and Pharmaceutical Sciences. Innovation 1:22

    Google Scholar 

  17. Sabernezhad M (2021) Cent Asian J Med Pharm Sci Innov 1:8

  18. Chen Y, Dong Y, Du X (2020) Biocell 44:1

    Article  CAS  Google Scholar 

  19. Zhang H, Xing X, Liu Y, Li S, Li W (2020) Oncologie 22:107

    Article  Google Scholar 

  20. Sharma DK, Goyal A, Chaturvedi S (2020) Oncologie 22.4:213

  21. Badalkhani-Khamseh F, Bahrami A, Ebrahim-Habibi A, Hadipour NL (2017) Chem Phys Lett 684:103

    Article  CAS  Google Scholar 

  22. Khafaei M, Hajiabadi MS, Abdolmaleki A (2021) Cent Asian J Med Pharm Sci Innov 1:55

  23. Miri A, Kiani E, Habibi S, Khafaei M (2021) Cent Asian J Med Pharm Sci Innov 1:81

  24. Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL (2017) J Comput Aided Mol Des 31:1097

    Article  CAS  PubMed  Google Scholar 

  25. Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL (2019) J Mol Recognit 32:e2757

    Article  PubMed  Google Scholar 

  26. Zeidali E, Korrani HM, Alizadeh Y, Kamari F (2021) Central Asian J Plant Sci Innov 1:46

    Google Scholar 

  27. Jalilian S (2020) Environmental risk assessment of Saman cement factory in Kermanshah city of Iran by AHP and TOPSIS methods.

  28. Ahmed S, Mahmood Q, Elahi N, Nawab B (2020) Central Asian Journal of Environmental Science and Technology Innovation 1:237

    Google Scholar 

  29. Qayyum S, Khan I, Meng K, Zhao Y, Peng C (2020) Cent Asian J Environ Sci Technol Innov 1

  30. Liu M, Xue Z, Zhang H, Li Y (2021) Electrochemi Commun 125:106974

  31. Zhang L, Zhang M, You S, Ma D, Zhao J, Chen Z (2021) Sci Total Environ 780:146505

  32. Zhang L, Zheng J, Tian S, Zhang H, Guan X, Zhu S, Zhang X, Bai Y, Xu P, Zhang J (2020) J Environ Sci 91:212

    Article  Google Scholar 

  33. Awan B, Sabeen M, Shaheen S, Mahmood Q, Ebadi A, Toughani M (2020) Central Asian Journal of Environmental Science and Technology Innovation 1:150

    Google Scholar 

  34. Haghshenas H, Ghanbari Malidarreh A (2021) Central Asian Journal of Plant Science Innovation 1:23

  35. Hosseini MR, Esfandiarpour R, Taghipour S, Badalkhani-Khamseh F (2020) Chem Phys Lett 754:137712

    Article  CAS  Google Scholar 

  36. Yahyavi M, Badalkhani-Khamseh F, Hadipour NL (2020) Chem Phys Lett 750:137492

    Article  CAS  Google Scholar 

  37. Barhoumi M, Lazaar K, Said M (2019) J Mol Graph Model 91:72

    Article  CAS  PubMed  Google Scholar 

  38. Schwierz F (2010) Nat Nanotechnol 5:487

    Article  CAS  PubMed  Google Scholar 

  39. Baei MT, Peyghan AA, Bagheri Z, Tabar MB (2012) Phys Lett A 377:107

    Article  CAS  Google Scholar 

  40. Zhai Y, Zhu Z, Dong S (2015) ChemCatChem 7:2806

    Article  CAS  Google Scholar 

  41. Usman AK, Abdullahi H, Opara JA (2020) Central Asian Journal of Environmental Science and Technology Innovation 1:12

    Google Scholar 

  42. Chaghakaboodi Z, Kakaei M, Zebarjadi A (2021) Central Asian J Plant Sci Innov 1:1

    Google Scholar 

  43. Jiang H, Lee PS, Li C (2013) Energy Environ Sci 6:41

    Article  CAS  Google Scholar 

  44. Kahanju Chitiki A (2020) Central Asian Journal of Environmental Science and Technology Innovation 1:168

  45. Garba H, Ahmed S, Abdullahi I (2020) Central Asian Journal of Environmental Science and Technology Innovation 1:101

    Google Scholar 

  46. Peyghan AA, Beheshtian J (2020) Thin Solid Films 704:137979

  47. Cui H, Yan C, Jia P, Cao W (2020) Appl Surf Sci 512:145759

  48. Jahandini A, Soleimami H, Ghaffari SR (2020) Central Asian Journal of Environmental Science and Technology Innovation 1

  49. Du H, Ye J, Zhang J, Huang X, Yu C (2011) J Electroanal Chem 650:209

    Article  CAS  Google Scholar 

  50. Velmurugan M, Karikalan N, Chen S-M, Cheng Y-H, Karuppiah C (2017) J Colloid Interface Sci 500:54

    Article  CAS  PubMed  Google Scholar 

  51. Kiraly B, Liu X, Wang L, Zhang Z, Mannix AJ, Fisher BL, Yakobson BI, Hersam MC, Guisinger NP (2019) ACS Nano 13:3816

    Article  CAS  PubMed  Google Scholar 

  52. Xiao C, Ma K, Cai G, Zhang X, Vessally E (2020) J Mol Graph Model 96:107539

  53. Liu C-S, Wang X, Ye X-J, Yan X, Zeng Z (2014) J Chem Phys 141:194306

  54. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  55. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  PubMed  Google Scholar 

  56. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) CrystEngComm 10:405

    Article  CAS  Google Scholar 

  57. Hirao H (2011) J Phys Chem A 115:9308

    Article  CAS  PubMed  Google Scholar 

  58. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  59. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  60. Ranjan P, Sahu TK, Bhushan R, Yamijala SS, Late DJ, Kumar P, Vinu A (2019) Adv Mater 31:1900353

    Article  Google Scholar 

  61. Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI (2012) Nano Lett 12:2441

    Article  CAS  PubMed  Google Scholar 

  62. Blakemore J (1974) Edition by WB Saunders Company

  63. Baikie I, Mackenzie S, Estrup P, Meyer J (1991) Rev Sci Instrum 62:1326

    Article  CAS  Google Scholar 

  64. Korotcenkov G (2013) Handbook of gas sensor materials. Springer, p 377

  65. Liu Z, Wang Z, Cao Y, Jing Y, Liu Y (2011) Sens Actuators, B Chem 157:540

    Article  CAS  Google Scholar 

  66. Zhao Y, Song X, Song Q, Yin Z (2012) CrystEngComm 14:6710

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Scientific Research Foundation of SUMHS, Grant No. SSF-21–03-004.

Author information

Authors and Affiliations

Authors

Contributions

Ruoyu Yang: methodology, software, visualization, writing—original draft preparation.

Chao Wu: conceptualization, writing—reviewing and editing, supervision.

Saeideh Ebrahimiasl: validation, investigation.

Corresponding author

Correspondence to Chao Wu.

Ethics declarations

Conflict of interest

The authors gratefully acknowledge the financial support of the Scientific Research Foundation of SUMHS, Grant No. SSF-21–03-004.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wu, C. & Ebrahimiasl, S. Application of borophene as catechol sensor: a computational study. J Mol Model 27, 310 (2021). https://doi.org/10.1007/s00894-021-04929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04929-4

Keywords

Navigation