Skip to main content

Advertisement

Log in

First-principles study of the structural phase transition process of solid nitrogen under pressure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Due to the diversity of solid nitrogen structure, its phase transition has been a hot topic for many scientists. Herein, we first studied the structural softening of rhombohedral solid nitrogen under pressure using first-principles calculations. Then, a new criterion, Egret criterion, was proposed to predict the whole process from beginning to end of structural phase transition of solid nitrogen. Based on the discussion of acoustic phonons, we concluded that the phase transition of rhombohedral solid nitrogen starts from k-point F along the [− 1, − 1, 0] direction in a-axis, and the structural phase transition velocity is slow. Also, we use the Egret criterion proposed by us to predict the emergence of ξ-N2 and the stability of ξ-N2 at 17 GPa and 22 GPa, respectively, and this result is in good agreement with the phase diagram of nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

N/A.

References

  1. Schuch AF, Mills RL (1970) Crystal structures of the three modifications of nitrogen 14 and nitrogen 15 at high pressure. J Chem Phys 52:6000

    Article  CAS  Google Scholar 

  2. Hanfland M, Lorenzen M, Wassilew-Reul C, Zontone F (1998) Structures of molecular nitrogen at high pressures. Rev High Press Sci Technol 7:787

    Article  CAS  Google Scholar 

  3. Mills RL, Olinger B, Cromer DT (1986) Structures and phase diagrams of N2 and CO to 13 GPa by X-ray diffraction. J Chem Phys 84:2837

    Article  CAS  Google Scholar 

  4. Streib WE, Jordan TH, Lipscomb WN (1962) Single-crystal X-ray diffraction study of β nitrogen. J Chem Phys 37:2962

    Article  CAS  Google Scholar 

  5. Schiferl D, Cromer DT, Ryan RR, Larson AC, Lesar R, Mills RL (1983) Structure of N2 at 2.94 GPa and 300 K. Acta Cryst C 39:1151

    Article  Google Scholar 

  6. Olijnyk H (1990) High pressure X-ray diffraction studies on solid N2 up to 43.9 GPa. J Chem Phys 93:8968

    Article  CAS  Google Scholar 

  7. Cromer DT, Mills RL, Schiferl D, Schwalbe LA (1981) The structure of N2 at 49 kbar and 299 K. Acta Cryst B37:8

    Article  CAS  Google Scholar 

  8. Stinton GW, Loa I, Lundegaard LF, McMahon MI (2009) The crystal structures of δ and δ* nitrogen. J Chem Phys 131:104511

    Article  Google Scholar 

  9. Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Single-bonded cubic form of nitrogen. Nat Mater 3:558

    Article  CAS  Google Scholar 

  10. Pu MF, Liu S, Lei L, Zhang F, Feng LH, Qi L, Zhang LL (2019) raman study of pressure-induced dissociative transitions in nitrogen. Solid State Commun 298:113645

    Article  CAS  Google Scholar 

  11. Lipp MJ, Park Klepeis J, Baer BJ, Cynn H, Evans WJ, Iota V, Yoo CS (2007) Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating. Phys Rev B 76:014113

    Article  Google Scholar 

  12. Eremets MI, Gavriliuk AG, Trojan IA (2007) Single-crystalline polymeric nitrogen. Appl Phys Lett 90:171904

    Article  Google Scholar 

  13. Tomasino D, Kim M, Smith J, Yoo CS (2014) Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys Rev Lett 113:205502

    Article  Google Scholar 

  14. Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P (2019) Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys Rev Lett 122:066001

    Article  CAS  Google Scholar 

  15. Lei L, Tang QQ, Zhang F, Liu S, Wu BB, Zhou CY (2020) Evidence for a new extended solid of nitrogen. Chin Phys Lett 37:068101

    Article  CAS  Google Scholar 

  16. Ji C, Adeleke AA, Yang LX, Wan B, Gou HY, Yao YS, Li B, Meng Y, Smith JS, Prakapenka VB, Liu WJ, Shen GY, Mao WL, Mao H-K (2020) Nitrogen in black phosphorus structure. Sci Adv 6:eaba9206

    Article  CAS  Google Scholar 

  17. Greschner MJ, Zhang M, Majumdar A, Liu HY, Peng F, Tse JS, Yao YS (2016) a new allotrope of nitrogen as high-energy density material. J Phys Chem 120:2920

    Article  CAS  Google Scholar 

  18. Turnbull R, Hanfland M, Binns J, Canales MM, Frost M, Marqués M, Howie RT, Gregoryanz E (2018) Unusually complex phase of dense nitrogen at extreme conditions. Nat Commun 9:4717

    Article  Google Scholar 

  19. Li JF, Jiang QW, Zhu ZQ, Zhu HY, Wang XL (2018) Cage-like N106- salt with N-N single bonds. Europhys Lett 124:67004

    Article  Google Scholar 

  20. Zhang J, Zeng Z, Lin HQ, Li YL (2014) Pressure-induced planar N6 rings in potassium azide. Sci Rep 4:4358

    Article  Google Scholar 

  21. Adeleke AA, Greschner MJ, Majumdar A, Wan B, Liu HY, Li ZP, Gou HY, Yao YS (2017) Single-bonded allotrope of nitrogen predicted at high pressure. Phys Rev B 96:224104

    Article  Google Scholar 

  22. Bondarchuk SV, Minaevab BF (2017) Super high-energy density single-bonded trigonal nitrogen allotrope—a chemical twin of the cubic gauche form of nitrogen. Phys Chem Chem Phys 19:6698

    Article  CAS  Google Scholar 

  23. Li YW, Feng XL, Liu HY, Hao J, Redfern SAT, Lei WW, Liu D, Ma YM (2018) Route to high-energy density polymeric nitrogen t-N via He−N compounds. Nat Commun 9:722

    Article  Google Scholar 

  24. Wang XL, Wang YC, Miao MS, Zhong X, Lv J, Cui T, Li JF, Chen L, Pickard CJ, Ma YM (2012) Cagelike diamondoid nitrogen at high pressures. Phys Rev Lett 109:175502

    Article  Google Scholar 

  25. Raich JC, Mills RL (1971) α-γ transition in solid nitrogen and carbon monoxide at high pressure. J Chem Phys 55:1811

    Article  CAS  Google Scholar 

  26. Mailhiot C, Yang LH, McMahan AK (1992) Polymeric nitrogen. Phys Rev B 46:14419

    Article  CAS  Google Scholar 

  27. Plašienka D, Martoňák R (2015) Transformation pathways in high-pressure solid nitrogen: from molecular N2 to polymeric cg-N. J Chem Phys 142:094505

    Article  Google Scholar 

  28. Akahama Y, Ishihara D, Yamashita H, Fujihisa H, Hirao N, Ohishi Y (2016) Phase stability and magnetic behavior of hexagonal phase of N2–O2 system with Kagome lattice under high pressure and low temperature. Phys Rev B 94:064104

    Article  Google Scholar 

  29. Pu MF, Li L (2019) Polarization symmetry breaking in nitrogen under high pressure. Solid State Commun 298:113645

  30. Jiang CL, Zeng W, Gan YD, Liu FS, Tang B, Liu QJ (2020) Structural softening of solid nitrogen under pressure by first-principles calculations. J Phys Chem Solids 146:109616

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  34. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    Article  CAS  Google Scholar 

  35. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou XL, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  36. Antonangeli D, Morard G, Paolasini L, Garbarino G, Murphy CA, Edmund E, Decremps F, Fiquet G, Bosak A, Mezouar M, Fei YW (2018) Sound velocities and density measurements of solid hcp-Fe and hcp-Fe–Si (9wt.%) alloy at high pressure: constraints on the Si abundance in the Earth’s inner core. Earth Planet Sci Lett 482:446

    Article  CAS  Google Scholar 

  37. Sakamaki T, Ohtani E, Fukui H, Kamada S, Takahashi S, Sakairi T, Takahata A, Sakai T, Tsutsui S, Ishikawa D, Shiraishi R, Seto Y, Tsuchiya T, Baron AQR (2016) Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions. Sci Adv 2:1500802

    Article  Google Scholar 

  38. VSin’ko G, Smirnov NA (2004) On elasticity under pressure. J Phys Condens Matter 16:5101

    Google Scholar 

  39. Martorell B, Vocadlo L, Brodholt J, Wood IG (2013) Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions. Science 342:466

    Article  CAS  Google Scholar 

  40. Belak J, LeSar R, Etters RD (1990) Calculated thermodynamic properties and phase transitions of solid N2 at temperatures 0≤T≤300 K and pressures 0≤P≤100 GPa. J Chem Phys 92:5430

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fund of the Key Laboratory of National Defense Science and Technology (Grant No. 6142A03182008).

Author information

Authors and Affiliations

Authors

Contributions

Zhi-Xin Bai: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft

Cheng-Lu Jiang: formal analysis, investigation, methodology, writing—review and editing

Sheng-Hai Zhu: investigation, methodology, writing—review and editing

Mi Zhong: investigation, methodology, writing—review and editing

Ming-Jian Zhang: conceptualization, funding acquisition, methodology, writing—review and editing

Fu-Sheng Liu: conceptualization, methodology, writing—review and editing

Bin Tang: methodology, software, writing—review and editing

Qi-Jun Liu: conceptualization, resources, writing—review and editing

Xiang-Hui Chang: conceptualization, investigation, methodology, project administration, supervision, writing—review and editing

Corresponding author

Correspondence to Xiang-Hui Chang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ZX., Jiang, CL., Zhu, SH. et al. First-principles study of the structural phase transition process of solid nitrogen under pressure. J Mol Model 27, 307 (2021). https://doi.org/10.1007/s00894-021-04919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04919-6

Keywords

Navigation