Skip to main content
Log in

Theoretical investigations on mechanisms and kinetics of methylketene with O(3P) reaction in the atmosphere

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The O(3P)-initiated conversion mechanism and dynamics of CH3CHCO were researched in atmosphere by executing density functional theory (DFT) computations. Optimizations of all the species and single-point energy computations were implemented at the B3LYP/6–311++G(d,p) and CCSD(T)/cc-pVTZ level, respectively. The explicit oxidation mechanism was introduced and discussed. The results state clearly that the O(3P) association was more energetically beneficial than the abstraction of H. The rate coefficients over the probable temperature range of 200–3000 K were forecasted by implementing Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Specifically, the total rate coefficient of O(3P) association reactions is 1.19 × 10−11 cm3 molecule−1 s−1 at 298 K, which is consistent with the experimental results (1.16 × 10−11 cm3 molecule−1 s−1). The rate coefficients for the O(3P) with CH2CO, CH3CHCO, and (CH3)2CCO suggest that rate coefficient of ketene derivatives increase with the increase of methylation degree.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frank P, Bhaskaran KA, Just T (1986) High-temperature reactions of triplet methylene and ketene with radicals. J. Phys. Chem. 90:3809–3814

    Article  CAS  Google Scholar 

  2. Sun H, Tang YZ, Wang ZL, Pan XM, Li ZS, Wang RS (2005) DFT study on the mechanisms of the CH2CO + NCX (X = O, S) reactions. J. Mol. Struct. THEOCHEM 757:143–148

    Article  CAS  Google Scholar 

  3. Washida N, Hatakeyama S, Takagi H, Kyogoku T, Sato S (1983) Reaction of ketenes with atomic oxygen. J. Chem. Phys. 78:4533–4540

    Article  CAS  Google Scholar 

  4. Gaffney JS, Atkinson R, Pitts Jr JN (1975) Relative rate constants for the reaction of O(3P) atoms with selected olefins, monoterpenes, and unsaturated aldehydes. J. Am. Chem. Soc. 97:6481–6483

    Article  CAS  Google Scholar 

  5. Mack GPR, Thrush BA (1974) Reaction of oxygen atoms with carbonyl compounds part 3. – ketene. J. Chem. Soc. Faraday Trans. 1(70):187–192

    Article  Google Scholar 

  6. Zhou ZY, Fu H, Zhou XM, Cheng XL (2003) Mechanistic investigation on the multi-channel reaction of Cl+CH2CO. J. Mol. Struct. THEOCHEM 620:207–214

    Article  CAS  Google Scholar 

  7. Wallington TJ, Ball JC, Straccia AM, Hurley MD, Kaiser EW, Dill M, Schneider WF (1996) Kinetics and mechanism of the reaction of Cl atoms with CH2CO (ketene). Int. J. Chem. Kinet. 28:627–635

    Article  CAS  Google Scholar 

  8. Maricq MM, Ball JC, Straccia AM, Szente JJ (1997) A diode laser study of the Cl + CH3CO reaction. Int. J. Chem. Kinet. 29:421–429

    Article  CAS  Google Scholar 

  9. Hou H, Wang BS, Gu Y (2000) Ab initio mechanism and multichannel RRKM-TST rate constant for the reaction of Cl(2P) with CH2CO (ketene). J. Phys. Chem. A 104:320–328

    Article  CAS  Google Scholar 

  10. Grussdorf J, Nolte J, Temps F, Wagner HGG (1994) Primary products of the elementary reactions of CH2CO with F, Cl, and OH in the gas phase Ber. Bunsenges. Phys. Chem. 98:546–553

    Article  CAS  Google Scholar 

  11. Cheng XL, Zhao YY, Zhou XM, Zhou ZY (2003) Reaction mechanism for the F + CH2COreaction system based on density functional theory and vibrational mode analysis. J. Mol. Struct. THEOCHEM 638:27–35

    Article  CAS  Google Scholar 

  12. Lee J, Bozzelli JW (2003) Reaction of H plus ketene to formyl methyl and acetyl radicals and reverse dissociations. Int. J. Chem. Kinet. 35:20–44

    Article  CAS  Google Scholar 

  13. Michael JV, Nava DF, Payne WA, Stief LJ (1979) Absolute rate constants for the reaction of atomic hydrogen with ketene from 298 to 500 K. J. Chem. Phys. 70:5222–5227

    Article  CAS  Google Scholar 

  14. Slemr F, Warneck P (1975) Reactions of atomic hydrogen with ketene and acetaldehyde. Ber. Bunsenges. Phys. Chem. 79:152–156

    Article  CAS  Google Scholar 

  15. Hatakeyama S, Honda S, Akimoto H (1985) Reactions of ketene, methylketene, ethylketene, and dimethylketene with ozone in air. Bull. Chem. Soc. Jpn. 58:2411–2412

    Article  CAS  Google Scholar 

  16. Oehlers C, Temps F, Wagner HGG, Wolf M (1992) Kinetics of the reaction of OH radicals with CH2CO. Ber. Bunsenges. Phys. Chem. 96:171–175

    Article  CAS  Google Scholar 

  17. Brown AC, Canosa-Mas CE, Parr AD, Wayne RP (1989) Temperature dependence of the rate of the reaction between the OH radical and ketene. Chem. Phys. Lett. 161:491–496

    Article  CAS  Google Scholar 

  18. Semenikhin AS, Shubina EG, Savchenkova AS, Chechet IV, Matveev SG, Konnov AA, Mebel AM (2018) Mechanism and rate constants of the CH3 + CH2CO reaction: a theoretical study. Int. J. Chem. Kinet. 50:273–284

    Article  CAS  Google Scholar 

  19. Sun H, He HQ, Hong B, Chang YF, An Z, Wang RS (2006) Theoretical study of the mechanism of CH2CO + CN reaction. Int. J. Quant. Chem. 106:894–905

    Article  CAS  Google Scholar 

  20. Kohn W, Sham LJ (1965a) Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. A 137:1697–1705

    Article  CAS  Google Scholar 

  21. Sham LJ (1965b) Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140:1133–1138

    Article  Google Scholar 

  22. Holbrook KA, Pilling MJ, Robertson SH (1996) Unimolecular reactions; J. Wiley, Chichester

    Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc, Wallingford CT

  24. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B 37:785–789

    Article  CAS  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–5652

    Article  CAS  Google Scholar 

  26. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72:650–654

    Article  CAS  Google Scholar 

  27. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J. Comp. Chem. 14:294–301

    Article  Google Scholar 

  28. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J. Chem. Phys. 90:2154–2161

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94:5523

    Article  CAS  Google Scholar 

  30. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157:479–483

    Article  CAS  Google Scholar 

  31. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90:1007

    Article  CAS  Google Scholar 

Download references

Code availability

Gaussian 09 package program.

Funding

This work was supported by the Natural Science Foundations of China (No. 21707062) and Scientific Research Starting Foundation of Mianyang Normal University (No. QD2016A007) and supported by the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.

Author information

Authors and Affiliations

Authors

Contributions

Yongguo Liu, Huaming Du, Meilian Zhao, Yuxi Sun, Huirong Li Zhiguo Wang: Calculation, data curation, formal analysis, and investigation. Yunju Zhang: calculation and writing-review and editing

Corresponding author

Correspondence to Yunju Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y., Zhao, M. et al. Theoretical investigations on mechanisms and kinetics of methylketene with O(3P) reaction in the atmosphere. J Mol Model 27, 228 (2021). https://doi.org/10.1007/s00894-021-04850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04850-w

Keywords

Navigation