Skip to main content

Advertisement

Log in

Comparison in optoelectronic properties of triphenylamine-imidazole or imidazole as donor for dye-sensitized solar cell: theoretical approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, the structural and electronic properties of the D-D′-π-A organic dye with two donors have been calculated theoretically by DFT/time-dependent DFT method. In order to prove their efficiency as sensitizers, a comparative study was performed with a series of D-π-A architecture with one donor. The results of light-harvesting efficiency (LHE), open circuit voltage (Voc), free energy injection (∆Ginj), free energy dye regeneration∆Greg,excited-state lifetimes for the two series reveal that the D-D′-π-A dyes are promising for the design of new sensitive dyes in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Yes.

Code availability

Yes.

References

  1. O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature (353):737–740. https://doi.org/10.1038/353737a0

  2. Bomben P, Robson K, Koivisto B, Berlinguette C (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450

  3. Mishra A, Fischer MK, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed Engl 48:2474–2499

    Article  CAS  Google Scholar 

  4. Mathew S, Yella A, Gao P, Grätzel M, Nazeeruddin MK, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  5. Yao Z, Zhang M, Wu H, Yang L, Wang P (2015) Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 137(11):3799–802

  6. Yao Z, Wu H, Li Y, Wang J, Zhang J, Zhang M et al (2015) Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy Environ Sci. https://doi.org/10.1039/C5EE02822A

  7. Yao Z, Zhang M, Li R, Yang L, Qiao Y, Wang P (2015) A metal-free n-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye- sensitized solar cells. Angew Chem Int Ed 54(20):5994e8. https://doi.org/10.1002/anie.201501195

  8. Ooyama Y, Harima Y (2009) Y.Ooyama, Y. Harima, Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized. Eur J Org Chem. https://doi.org/10.1002/ejoc.200900236

  9. Hwang S, Lee JH, Park C, Lee H, Kim C, Lee W, Park J, Kim K, Park NG (2007) A Highly Efficient Organic Sensitizer for Dye-Sensitized Solar Cells. Chem Commun 46:4887–4889

  10. Teng-Fei L, Wei L, Hong-Xing Z (2018) Rational design of metal-free organic D-π-A dyes in dye-sensitized solar cells: Insight from density functional theory (DFT) and time-dependent DFT (TD-DFT). Org Electron 59:131–139

    Article  Google Scholar 

  11. Chen J, Tsai C, Wang S, Lin Y, Huang T, Chiu S, Wu C, Wong K (2011). J. Org. Chem. 76:8977–8985

    Article  CAS  Google Scholar 

  12. Lu X, Wei S, Wu CML, Li S, Guo W (2011). J. Phys. Chem. C 115(9):3753–3761

    Article  CAS  Google Scholar 

  13. Soto-Rojo R, Baldenebro-López J, Glossman-Mit D (2016). Theoretical Study of the π -Bridge Influence with Different Units of Thiophene and Thiazole in Coumarin Dye-Sensitized Solar Cells. International Journal of Photoenergy. 1–8. https://doi.org/10.1155/2016/6479649

  14. Singh M, Kurchania R, Pockett A, Ball RJ, Koukaras EN, Cameron PJ, Sharma GD Characterization of metal-free D-(π-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells. Indian J Phys 8

  15. Li P et al (2017) A systematic study of phenoxazine-based organic sensitizers for solar cells. Dyes Pigments 137:12–23

    Article  CAS  Google Scholar 

  16. Wang ZS, Liu F (2010). Front Chem Chin 5:150–161

    Article  Google Scholar 

  17. Irfan A (2019). Comp Theor Chem 1159:1–6

    Article  CAS  Google Scholar 

  18. Namuangruk S, Fukuda R, Ehara M, Meeprasert J, Khanasa T, Morada S, Kaewin T, Jungsuttiwon S, Sudyoadsuk T, Promarak V (2012) D-D−π–A-Type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation. J Phys Chem C 116:25653–25663

    Article  CAS  Google Scholar 

  19. Hilal R, Aziz SG, Osman OI, Bredas JL (2017) Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells. Mol Simul 43:1523–1531

    Article  CAS  Google Scholar 

  20. Jiang H, Wu Y, Islam A, Wu M, Zhang W, Shen C, Zhang H, Li E, Tian H, Zhu WH (2018) Molecular engineering of quinoxaline-based D-A−π–A organic sensitizers: taking the merits of a large and rigid auxiliary acceptor. ACS Appl. Mater. Interfaces 1020 10:13635–13644

    Article  CAS  Google Scholar 

  21. Yang W, Cao D, Zhang H, Yin X, Liao X, Huang J, Wu G, Li L, Hong Yang Y (2018) Dye-sensitized solar cells based on (D−π−A)3L2 phenothiazine dyes containing auxiliary donors and flexible linkers with different length of carbon chain. Electrochim Acta 283:1732–1741

    Article  CAS  Google Scholar 

  22. Li W, Wang J, Chen J, Bai FQ, Zhang HX (2014) Theoretical investigation of triphenylamine based sensitizers with different p-spacers for DSSC. Spectrochim Acta A Mol Biomol Spectrosc 118:1144e1151

    Google Scholar 

  23. Chitumalla RK, Jang J (2018) Density functional theory study on ruthenium dyes and dye@TiO2 assemblies for dye sensitized solar cell applications. Sol Energy 159:283e290

    Article  Google Scholar 

  24. Ko SB, Cho AN, Kim MJ, Lee CR, Park NG (2012) Alkyloxy substituted organic dyes for high voltage dye-sensitized solar cell: effect of alkyloxy chain length on open-circuit voltage. Dyes Pigments 94:88e98. https://doi.org/10.1016/j.dyepig.2011.1

    Article  Google Scholar 

  25. Yang Y, He Z, Jiang G, Liu F (2020) The influence on properties with different conjugated direction of phenoxazine and phenothiazine-based chromophores for organic nonlinear optical materials. Dyes Pigments 176:108219

    Article  Google Scholar 

  26. Chiu KY, Govindan V, Lin LC, Hunag SH, Hu JC, Lee KM, Tsai HH, Chang SH, Wu CG (2016) DPP containing D-π-A organic dyes toward highly efficient dye-sensitized solar cells. Dyes Pigments 125:27e35

    Article  Google Scholar 

  27. Xiaoli LY, Dadong L, Shanshan T, Ruifa J (2020) A theoretical approach of star-shaped molecules with triphenylamine core as sensitizer for their potential application in dye sensitized solar cells. J Mol Graph Model 101:107704. https://doi.org/10.1016/j.jmgm.2020.107704

  28. Sambathkumar S, Priyadharshini S, Fleisch M, Bahnemann DW, Gnana Kumar G, Kumar S, Senthilarasu S, Renganathan R (2019) Design and synthesis of imidazole-triphenylamine based organic materials for dye sensitized solar cells. Mater Lett 242. https://doi.org/10.1016/j.matlet.2019.01.091

  29. Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules, New York, pp 333–352

  30. Koch W, Holthausen MC (2000) Chemist's Guide to Density Functional Theory. Wiley-VCH, Weinheim

    Google Scholar 

  31. Bauernschmitt R, Ahlrichs R (1996). Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  32. Casida ME, Jamorski C, Casida KC, Salahu DR (1998). J Phys Chem 108

  33. Trucks GW, Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakats H, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Pen B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JEJ, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648e5652

    Article  Google Scholar 

  35. Becke AD (1993) A new mixing of HartreeeFock and local density-functional theories. J Chem Phys 98(2):1372e1377

    Article  Google Scholar 

  36. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1e3):51e57

    Google Scholar 

  37. Almogati RN, Aziz SG, Hilal R (2017) Effect of substitution on the optoelectronic properties of dyes for DSSC. A DFT approach. J Theor Comput Chem 16(02):1750018

    Article  CAS  Google Scholar 

  38. Zhu HC, Li CF, Fu ZH, Wei SS, Zhu XF, Zhang J (2018) Increasing the open circuit voltage and adsorption stability of squaraine dye binding onto the TiO2 anatase (1 0 1) surface via heterocyclic anchoring groups used for DSSC. Appl Surf Sci 455:1095e1105

    Google Scholar 

  39. Zhang W, Wu J, WeN Y, Wu W, Wang L (2018). First principles study on interface between dual-channel anchorable organicdyes and TiO2 for dye-sensitized solar cells. Dyes Pigm. 149:908-914. https://doi.org/10.1016/j.dyepig.2017.11.058

  40. Zhang W, Heng P, Su H, Ren T, Wang L, Zhang J (2018). J. PhysChem C 122

  41. Zhang Y, Li Y, Chen C, Wang L, Zhang J (2017). Org Electron 49:255–261

    Article  CAS  Google Scholar 

  42. Barone V, Cossi M (1995-2001). J Phys Chem A102:1998

    Google Scholar 

  43. Bourouina A, Rekhis M, Trari M (2017) DFT/TD-DFT study of ruthenium bipyridyl-based dyes with a chalcogen donor (X = S, Se, Te), for application as dye-sensitized solar cells. Polyhedron 127:217–224

    Article  CAS  Google Scholar 

  44. Katoh R, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004). J. Phys. Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  45. Zhang CR, Liu ZJ, Chen YH, Chen HS, Wu YZ, Feng W, Wang DB (2010). Curr Appl Phys 10:77–83

    Article  CAS  Google Scholar 

  46. Wei S, Li K, Lu X, Zhao Z, Shao Y, Dang Y, Li S, Guo W (2016) Theoretical insight into electronic structure and optoelectronic properties of heteroleptic Cu (I)-based complexes for dye-sensitized solar cells. Mater Chem Phys 173:139e145. https://doi.org/10.1016/j.matchemphys.2016.01.049

  47. Zanjanchi F, Beheshtian J (2018) Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study. J Iran Chem Soc 1e11

  48. Wazzan N, Irfan A (2018) Theoretical study of triphenylamine-based organic dyes with mono-, di-, and tri-anchoring groups for dye-sensitized solar cells. Org Electron 63:328e342

    Article  Google Scholar 

  49. Xu Y, Li M, Fu Y, Lu T, Hu Y, Lu W (2019) Theoretical study of high-efficiency organic dyes with the introduction of different auxiliary heterocyclic acceptors based on IQ1 toward dye-sensitized solar cells. J Mol Graph Model 86:170e178

    Article  Google Scholar 

  50. Hilborn RC (1982) Einstein coefficients, cross sections, f values, dipole moments, et all that. Am J Phys 50(11):982e986

    Article  Google Scholar 

  51. Li Y, Liu J, Liu D, Li X, Xu Y (2019) DA-p-A based organic dyes for efficient DSSCs: a theoretical study on the role of p-spacer. Comput Mater Sci 161:163e176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Equal contributions.

Corresponding author

Correspondence to Assia Bourouina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourouina, A., Rekis, M. Comparison in optoelectronic properties of triphenylamine-imidazole or imidazole as donor for dye-sensitized solar cell: theoretical approach. J Mol Model 27, 225 (2021). https://doi.org/10.1007/s00894-021-04844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04844-8

Keywords

Navigation