Skip to main content

Advertisement

Log in

Insights on a new sulfonamide chalcone with potential antineoplastic application

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chalcones (E)-1,3-diphenyl-2-propene-1-ones, a class of biosynthetic precursor molecules of flavonoids, have a wide variety of biological applications. Besides the natural products, many synthetic derivatives and analogs became an object of continued interest in academia and industry. In this work, a synthesis and an extensive structural study were performed on a sulfonamide chalcone 1-Benzenesulfonyl-3-(4-bromobenzylidene)-2-(2-chlorophenyl)-2,3-dihydro-1H-quinolin-4-one with potential antineoplastic application. In addition, in silico experiments have shown that the sulfonamide chalcone fits well in the ligand-binding site of EGFR with seven μ-alkyl binding energy interactions on the ligand-binding site. Finally, the kinetic stability and the pharmacophoric analysis for EGFR indicated the necessary spatial characteristics for potential activity of sulfonamide chalcone as an antagonist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

CCDC code 2070179, available at Cambridge Crystallography Data Center.

Code availability

N/A

References

  1. Silva WA, Andrade CKZ, Napolitano HB et al (2013) Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi. J Braz Chem Soc 24:133–144. https://doi.org/10.1590/S0103-50532013000100018

    Article  CAS  Google Scholar 

  2. Valverde C, Osório FAP, Fonseca TL, Baseia B (2018) DFT study of third-order nonlinear susceptibility of a chalcone crystal. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2018.06.001

  3. Doan TN, Tran DT (2011) Synthesis, antioxidant and antimicrobial activities of a novel series of Chalcones, Pyrazolic Chalcones, and allylic Chalcones. Pharmacol Pharm 02:282–288. https://doi.org/10.4236/pp.2011.24036

    Article  CAS  Google Scholar 

  4. Gupta D, Jain DK (2015) Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J Adv Pharm Technol Res Publ by Wolters Kluwer-Medknow J Adv Pharm Technol Res. https://doi.org/10.4103/2231-4040.161507

  5. Vásquez-Martínez YA, Osorio ME, San Martín DA et al (2019) Antimicrobial, anti-inflammatory and antioxidant activities of polyoxygenated chalcones. J Braz Chem Soc 30:286–304. https://doi.org/10.21577/0103-5053.20180177

    Article  CAS  Google Scholar 

  6. Mathew B, Adeniyi AA, Joy M et al (2017) Anti-oxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J Mol Struct 1146:301–308. https://doi.org/10.1016/j.molstruc.2017.05.100

    Article  CAS  Google Scholar 

  7. Xu M, Wu P, Shen F et al (2019) Chalcone derivatives and their antibacterial activities: current development. Bioorg Chem 91:1–17. https://doi.org/10.1016/j.bioorg.2019.103133

    Article  CAS  Google Scholar 

  8. ElSohly HN, Joshi AS, Nimrod AC et al (2001) Antifungal Chalcones from Maclura tinctoria. Planta Med 67:87–89. https://doi.org/10.1055/s-2001-10621

    Article  CAS  PubMed  Google Scholar 

  9. Kim TH, Seo WD, Ryu HW et al (2010) Anti-tumor effects by a synthetic chalcone compound is mediated by c-Myc-mediated reactive oxygen species production. Chem Biol Interact 188:111–118. https://doi.org/10.1016/j.cbi.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  10. Custodio JMF, Michelini LJ, de Castro MRC et al (2018) Structural insights into a novel anticancer sulfonamide chalcone. New J Chem 42:3426–3434

    Article  CAS  Google Scholar 

  11. Abonia R, Insuasty D, Castillo J et al (2012) Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur J Med Chem 57:29–40. https://doi.org/10.1016/j.ejmech.2012.08.039

    Article  CAS  PubMed  Google Scholar 

  12. Mahapatra DK a, Bharti SK u, Asati V (2015) Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem 98:69–114

    Article  CAS  Google Scholar 

  13. D’oliveira GDC, Moura AF, De Moraes MO et al (2018) Synthesis, Characterization and Evaluation of in vitro Antitumor Activities of Novel Chalcone-Quinolinone Hybrid Compounds. Artic J Braz Chem Soc 29. https://doi.org/10.21577/0103-5053.20180108

  14. Solomon VR, Lee H (2012) Anti-breast cancer activity of heteroaryl chalcone derivatives. Biomed Pharmacother 66:213–220. https://doi.org/10.1016/j.biopha.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  15. Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137. https://doi.org/10.1016/j.ejmech.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  16. Hirai S, Kim YI, Goto T et al (2007) Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci 81:1272–1279. https://doi.org/10.1016/j.lfs.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  17. Syahri J, Yuanita E, Nurohmah BA et al (2017) Chalcone analogue as potent anti-malarial compounds against plasmodium falciparum: synthesis, biological evaluation, and docking simulation study. Asian Pac J Trop Biomed 7:675–679. https://doi.org/10.1016/j.apjtb.2017.07.004

    Article  Google Scholar 

  18. Domínguez JN, León C, Rodrigues J et al (2005) Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farm 60:307–311. https://doi.org/10.1016/j.farmac.2005.01.005

    Article  CAS  Google Scholar 

  19. Iman M, Davood A, Banarouei N (2014) QSAR study of chalcone derivatives as anti-Leishmania agents. Turk J Chem 38:716–724. https://doi.org/10.3906/kim-1307-33

    Article  CAS  Google Scholar 

  20. Coskun D, Erkisa M, Ulukaya E et al (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: synthesis, characterization and anticancer activity. Eur J Med Chem 136:212–222. https://doi.org/10.1016/j.ejmech.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zhang X, Kelsang N et al (2018) Structurally diverse cytotoxic dimeric Chalcones from Oxytropis chiliophylla. J Nat Prod 81:307–315

    Article  CAS  Google Scholar 

  22. De Castro MRC, Aragão ÂQ, Da Silva CC et al (2016) Conformational variability in sulfonamide chalcone hybrids: Crystal structure and cytotoxicity. J Braz Chem Soc 27:884–898. https://doi.org/10.5935/0103-5053.20150341

    Article  CAS  Google Scholar 

  23. Go M, Wu X, Liu X (2005) Chalcones: an update on cytotoxic and Chemoprotective properties. Curr Med Chem 12:483–499. https://doi.org/10.2174/0929867053363153

    Article  CAS  Google Scholar 

  24. Sharma V, Chaudhary A, Arora S et al (2013) β-Ionone derived chalcones as potent antiproliferative agents. Eur J Med Chem 69:310–315. https://doi.org/10.1016/j.ejmech.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  25. Lima RS, Perez CN, Silva CC et al (2016) Structure and cytotoxic activity of terpenoid-like chalcones. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.02.013

  26. Roussaki M, Hall B, Lima SC et al (2013) Synthesis and anti-parasitic activity of a novel quinolinone–chalcone series. Bioorg Med Chem Lett 23:6436–6441. https://doi.org/10.1016/j.bmcl.2013.09.047

    Article  CAS  PubMed  Google Scholar 

  27. Wei H, Zhang X, Wu G et al (2013) Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food Chem Toxicol 60:147–152. https://doi.org/10.1016/j.fct.2013.07.045

    Article  CAS  PubMed  Google Scholar 

  28. Bukhari SNA, Franzblau SG, Jasamai IJM (2013) Current prospects of synthetic curcumin analogs and Chalcone derivatives against mycobacterium tuberculosis. Med Chem (Los Angeles) 9:897–903

    CAS  Google Scholar 

  29. Wan Z, Hu D, Li P et al (2015) Synthesis, antiviral bioactivity of novel 4-Thioquinazoline derivatives containing Chalcone moiety:11861–11874. https://doi.org/10.3390/molecules200711861

  30. Zhuang C, Zhang W, Sheng C et al (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rocha S, Ribeiro D, Fernandes E, Freitas M (2020) A systematic review on anti-diabetic properties of Chalcones. Curr Med Chem 27:2257–2321

    Article  CAS  Google Scholar 

  32. Chiu TL, So SS (2004) Development of neural network QSPR models for Hansch substituent constants. 2. Applications in QSAR studies of HIV-1 reverse transcriptase and Dihydrofolate reductase inhibitors. J Chem Inf Comput Sci 44:154–160. https://doi.org/10.1021/ci030294i

    Article  CAS  PubMed  Google Scholar 

  33. Sarnpitak P, Mujumdar P, Taylor P et al (2015) Panel docking of small-molecule libraries — prospects to improve efficiency of lead compound discovery. Biotechnol Adv 33:941–947. https://doi.org/10.1016/j.biotechadv.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  34. Méndez-lucio O, Naveja JJ, Vite-caritino H et al (2016) Review. One drug for multiple targets: a computational perspective. J Mex Chem Soc 60(3):168–181

  35. Makhoba XH, Viegas Jr. C, Mosa RA et al (2020) Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 14:3235–3249. https://doi.org/10.2147/DDDT.S257494

  36. Botânica S, Webster SRD, Gomes AS, et al (2016) Iheringia initial growth of sesame , Sesamum indicum L ., and brachiaria. https://doi.org/10.21826/2446-8231201873106

  37. Zhou B (2015) Diverse molecular targets for Chalcones with varied bioactivities. Med Chem (Los Angeles). https://doi.org/10.4172/2161-0444.1000291

  38. Sangpheak K, Tabtimmai L, Seetaha S et al (2019) Biological evaluation and molecular dynamics simulation of Chalcone derivatives as epidermal growth factor-tyrosine kinase inhibitors. Molecules 24:1092. https://doi.org/10.3390/molecules24061092

    Article  CAS  PubMed Central  Google Scholar 

  39. Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT (2003) Anticancer and antiviral sulfonamides. Curr Med Chem 10:925–953

    Article  CAS  Google Scholar 

  40. Gulçin İ, Taslimi P (2018) Sulfonamide inhibitors: a patent review 2013-present. Expert Opin Ther Pat 28:541–549. https://doi.org/10.1080/13543776.2018.1487400

    Article  CAS  PubMed  Google Scholar 

  41. Haile PA, Casillas LN, Bury MJ et al (2020) Correction to identification of Quinoline-based RIP2 kinase inhibitors with an improved therapeutic index to the hERG Ion Channel. ACS Med Chem Lett 11:1353

    Article  CAS  Google Scholar 

  42. Aly R, Serya R, El-Motwally A et al (2016) Quinoline-based small molecules as effective protein kinases inhibitors (review). J Am Sci 12. https://doi.org/10.7537/marsjas12051602

  43. Li K, Li Y, Zhou D et al (2016) Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Bioorg Med Chem 24:1889–1897. https://doi.org/10.1016/j.bmc.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  44. Rozmer Z, Perjési P (2016) Naturally occurring chalcones and their biological activities. Phytochem Rev 15:87–120

    Article  CAS  Google Scholar 

  45. d’Oliveira G, Moura A, de Moraes M et al (2018) Synthesis, characterization and evaluation of in vitro antitumor activities of novel chalcone-quinolinone hybrid compounds. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20180108

  46. Sheldrick GM (1990) SHELXS: program for the solution of crystal structures. University of Gottingen, Germany

  47. Sheldrick GM (2015) Crystal structure refinement with SHELXL 71:3–8. https://doi.org/10.1107/S2053229614024218

  48. Farrugia LJ (1999) WinGX suite for small- molecule single-crystal crystallography. J Appl Crystallogr 32:837–838. https://doi.org/10.1107/S0021889899006020

    Article  CAS  Google Scholar 

  49. Dolomanov OV, Bourhis LJ, Gildea RJ et al (2009) OLEX2: a complete structure solution, refinement and general all round good thing Olex2. J Appl Crystallogr. https://doi.org/10.1107/S0021889808042726

  50. Wolff SK, Grimwood DJ, McKinnon JJ et al (2012) CrystalExplorer17. University of Western Australia, Perth

  51. Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  52. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr B Struct Sci Cryst Eng Mate. https://doi.org/10.1107/S2052520616003954

  53. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B Struct Sci 60:627–668. https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  54. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision a.02. Gaussian Inc, Wallingford CT

    Google Scholar 

  56. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  57. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  58. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  59. Wiberg KB, Box PO, Haven N (2004) Basis set effects on calculated geometries : 6–311++ G ** vs . aug-cc-pVDZ. https://doi.org/10.1002/jcc.20058

  60. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density Functionals. https://doi.org/10.1021/jp0734474

  61. Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05#2X and M06#2X exchange correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4:1996–2000. https://doi.org/10.1021/ct800308k

    Article  CAS  PubMed  Google Scholar 

  62. Pereira DH, La Porta FA, Santiago RT et al (2016) New perspectives on the role of frontier molecular orbitals in the study of chemical reactivity: a review. Rev Virtual Química 8:425–453. https://doi.org/10.5935/1984-6835.20160032

    Article  Google Scholar 

  63. Grant GH, Richards WG (1996) Computational chemistry. University Press, Oxford

  64. Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular surface:3959–3961. https://doi.org/10.1021/j100373a017

  65. Gfeller D, Grosdidier A, Wirth M et al (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:W32–W38. https://doi.org/10.1093/nar/gku293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gfeller D, Michielin O, Zoete V (2013) Shaping the interaction landscape of bioactive molecules. Bioinformatics 29:3073–3079. https://doi.org/10.1093/bioinformatics/btt540

    Article  CAS  PubMed  Google Scholar 

  67. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  68. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263. https://doi.org/10.1093/nar/gky318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Banerjee P, Dehnbostel FO, Preissner R (2018) Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets. Front Chem:6. https://doi.org/10.3389/fchem.2018.00362

  70. Drwal MN, Banerjee P, Dunkel M et al (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42:W53–W58. https://doi.org/10.1093/nar/gku401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schneidman-Duhovny D, Dror O, Inbar Y et al (2008) Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J Comput Biol 15:737–754. https://doi.org/10.1089/cmb.2007.0130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schneidman-Duhovny D, Dror O, Inbar Y et al (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. https://doi.org/10.1093/nar/gkn187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  74. KIUCHI F, CHEN X, TSUDA Y (1990) Z-E isomerization of .BETA.-methoxychalcones: Preferred existence of E-isomers in naturally occurring .BETA.-methoxychalcones. Chem Pharm Bull (Tokyo) 38:1862–1871. https://doi.org/10.1248/cpb.38.1862

    Article  CAS  Google Scholar 

  75. Shin DM, Song DM, Jung KH, Moon JH (2001) Photochemical transformation of chalcone derivatives. J Photosci 8:9–12

    Google Scholar 

  76. Perjési P (2015) (E)-2-Benzylidenebenzocyclanones: part XIII—(E)/(Z)-isomerization of some cyclic chalcone analogues. Effect of ring size on lipophilicity of geometric isomers. Monatshefte für Chemie - Chem Mon 146:1275–1281. https://doi.org/10.1007/s00706-015-1463-2

    Article  CAS  Google Scholar 

  77. Baas P, Cerfontain H (1977) Conformational study on some β-phenyl-α,β-unsaturated ketones. Tetrahedron 33:1509–1511. https://doi.org/10.1016/0040-4020(77)88013-7

    Article  CAS  Google Scholar 

  78. Lawrence NJ, Patterson RP, Ooi L-L et al (2006) Effects of α-substitutions on structure and biological activity of anticancer chalcones. Bioorg Med Chem Lett 16:5844–5848. https://doi.org/10.1016/j.bmcl.2006.08.065

    Article  CAS  PubMed  Google Scholar 

  79. Kozurkova M, Tomeckova V (2020) Interaction of chalcone derivatives with important biomacromolecules. Nova Science, New York

    Google Scholar 

  80. Rücker H, Al-Rifai N, Rascle A et al (2015) Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site. Org Biomol Chem 13:3040–3047. https://doi.org/10.1039/C4OB02301C

    Article  CAS  PubMed  Google Scholar 

  81. Perjési P, Linnanto J, Kolehmainen E et al (2005) E-2-Benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones. J Mol Struct 740:81–89. https://doi.org/10.1016/j.molstruc.2004.10.013

    Article  CAS  Google Scholar 

  82. Zhao C, Rakesh KP, Ravidar L et al (2019) Pharmaceutical and medicinal significance of sulfur (SVI)-containing motifs for drug discovery: a critical review. Eur J Med Chem 162:679–734. https://doi.org/10.1016/j.ejmech.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  83. Fernández-Villa A, Rojo (2019) Folic acid antagonists: antimicrobial and Immunomodulating mechanisms and applications. Int J Mol Sci 20:4996. https://doi.org/10.3390/ijms20204996

    Article  CAS  PubMed Central  Google Scholar 

  84. D’Ambrosio K, Masereel B, Thiry A et al (2008) Carbonic anhydrase inhibitors: binding of Indanesulfonamides to the human isoform II. ChemMedChem 3:473–477. https://doi.org/10.1002/cmdc.200700274

    Article  CAS  PubMed  Google Scholar 

  85. Dauphin G, Kergomard A (1961) The acid dissociation of some sulfonamides. Bull Soc Chim Fr 3:486–492

    CAS  Google Scholar 

  86. Cotton FA, Stokely PF (1970) Structural basis for the acidity of sulfonamides. Crystal structures of dibenzenesulfonamide and its sodium salt. J Am Chem Soc 92:294–302. https://doi.org/10.1021/ja00705a012

    Article  CAS  Google Scholar 

  87. Caine BA, Bronzato M, Popelier PLA (2019) Experiment stands corrected: accurate prediction of the aqueous p K a values of sulfonamide drugs using equilibrium bond lengths. Chem Sci 10:6368–6381. https://doi.org/10.1039/C9SC01818B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Speckamp WN, Pandit UK, Korver PK, van der Haak PJ, Huisman HO (1966) Dihydroquinolones-V: hindered inversion in dihydroquinolones and related systems. Tetrahedron 22:2413–2427

    Article  CAS  Google Scholar 

  89. Morton R, F Jr BJ (1971) The effect of polar substituents on the barrier to rotation about the Sulfenyl sulfur-nitrogen bond in N-alkyl-N- arenesulfonyl-arenesulfenamides. J Am Chem Soc 93:2692–2699

    Article  Google Scholar 

  90. Okbinoglu T, Kennepohl PT (2020) The nature of S-N bonding in sulfonamides and related compounds: insights into ?-bonding contributions from sulfur K-edge XAS. ChemRxiv Prepr. https://doi.org/10.26434/chemrxiv.13204985.v1

  91. LaPlante SR, Fader LD, Fandrick KR et al (2011) Assessing Atropisomer axial chirality in drug discovery and development. J Med Chem 54:7005–7022. https://doi.org/10.1021/jm200584g

    Article  CAS  PubMed  Google Scholar 

  92. Lu S, Ng SVH, Lovato K et al (2019) Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation. Nat Commun 10:3061. https://doi.org/10.1038/s41467-019-10940-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beteck RM, Smit FJ, Haynes RK, N’Da DD (2014) Recent progress in the development of anti-malarial quinolones. Malar J 13:339. https://doi.org/10.1186/1475-2875-13-339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hussaini SMA (2016) Therapeutic significance of quinolines: a patent review (2013-2015). Expert Opin Ther Pat 26:1201–1221. https://doi.org/10.1080/13543776.2016.1216545

    Article  CAS  PubMed  Google Scholar 

  95. Mukherjee S, Pal M (2013) Medicinal chemistry of Quinolines as emerging anti-inflammatory agents: an overview. Curr Med Chem 20:4386–4410. https://doi.org/10.2174/09298673113209990170

    Article  CAS  PubMed  Google Scholar 

  96. Marais JPJ, Deavours B, Dixon RA, Ferreira D (2006) The stereochemistry of flavonoids, 1st edn. Springer, New York, pp 1–46

  97. Rocha DHA, Vaz PAAM, Pinto DCGA, Silva AMS (2019) Synthesis Chalones and their isomerization into flavanones and Azaflavanones. Methods Protocol 2:70. https://doi.org/10.3390/mps2030070

    Article  CAS  Google Scholar 

  98. Nibbs AE, Scheidt KA (2012) Asymmetric methods for the synthesis of flavanones, Chromanones, and Azaflavanones. Eur J Org Chem 2012:449–462. https://doi.org/10.1002/ejoc.201101228

    Article  CAS  Google Scholar 

  99. Brahmachari G (2008) Naturally occurring flavanones: an overview. Nat Prod Commun 3:1934578X0800300. https://doi.org/10.1177/1934578X0800300820

    Article  Google Scholar 

  100. Zhang S-X, Feng J, Kuo S-C et al (2000) Antitumor agents. 199. † three-dimensional quantitative structure−activity relationship study of the colchicine binding site ligands using comparative molecular field analysis. J Med Chem 43:167–176. https://doi.org/10.1021/jm990333a

    Article  CAS  PubMed  Google Scholar 

  101. Xia Y, Yang Z-Y, Xia P et al (1998) Antitumor agents. 181. † synthesis and biological evaluation of 6,7,2′,3′,4‘-Substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of antimitotic antitumor agents. J Med Chem 41:1155–1162. https://doi.org/10.1021/jm9707479

    Article  CAS  PubMed  Google Scholar 

  102. Jiang C, Yang L, Wu W-T et al (2011) De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors. Bioorg Med Chem 19:5612–5627. https://doi.org/10.1016/j.bmc.2011.07.029

    Article  CAS  PubMed  Google Scholar 

  103. Mphahlele MJ, Oyeyiola FA (2011) Suzuki–Miyaura cross-coupling of 2-aryl-6,8-dibromo-1,2,3,4-tetrahydroquinolin-4-ones and subsequent dehydrogenation and oxidative aromatization of the resulting 2,6,8-triaryl-1,2,3,4-tetrahydroquinolin-4-ones. Tetrahedron 67:6819–6825. https://doi.org/10.1016/j.tet.2011.06.085

    Article  CAS  Google Scholar 

  104. Abbate S, Burgi LF, Castiglioni E et al (2009) Assessment of configurational and conformational properties of naringenin by vibrational circular dichroism. Chirality 21:436–441. https://doi.org/10.1002/chir.20616

    Article  CAS  PubMed  Google Scholar 

  105. Chelghoum M, Bouraiou A, Bouacida S et al (2014) 2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1 H )-one. Acta Crystallogr Sect E Struct Rep Online 70:o202–o203. https://doi.org/10.1107/S1600536814001548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  107. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 3814. https://doi.org/10.1039/B704980C

  108. Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. https://doi.org/10.1021/jp061633o

  109. Kavitha S, Nasarullah Z, Kannan K (2019) Synthesis and biological evaluation of sulfonamide-based 1,3,4-oxadiazole derivatives. Bull Chem Soc Ethiop 33:307. https://doi.org/10.4314/bcse.v33i2.11

    Article  CAS  Google Scholar 

  110. Meena LR, Sharma VS, Swarnkar P (2020) Synthesis, biological investigations, QSAR and DFT analysis of sulfonamide chalcones as potential: antimicrobial, antifungal and antimalarial agents. World Sci News 147:179–196

    CAS  Google Scholar 

  111. Özbek N, Özdemir ÜÖ, Altun AF, Şahin E (2019) Sulfonamide-derived hydrazone compounds and their Pd (II) complexes: synthesis, spectroscopic characterization, X-ray structure determination, in vitro antibacterial activity and computational studies. J Mol Struct 1196:707–719. https://doi.org/10.1016/j.molstruc.2019.07.016

    Article  CAS  Google Scholar 

  112. Fahim AM, Shalaby MA (2019) Synthesis, biological evaluation, molecular docking and DFT calculations of novel benzenesulfonamide derivatives. J Mol Struct 1176:408–421. https://doi.org/10.1016/j.molstruc.2018.08.087

    Article  CAS  Google Scholar 

  113. d’Oliveira GDC, Custodio JMF, Moura AF et al (2019) Different reactivity to glutathione but similar tumor cell toxicity of chalcones and their quinolinone analogues. Med Chem Res 28:1448–1460. https://doi.org/10.1007/s00044-019-02384-8

    Article  CAS  Google Scholar 

  114. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202. https://doi.org/10.1289/ehp.8561191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1:153–163. https://doi.org/10.1002/wcms.19

    Article  CAS  Google Scholar 

  116. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997). Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  117. Singh P, Anand A, Kumar V (2014) Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 85:758–777. https://doi.org/10.1016/j.ejmech.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  118. Yoshida T, Zhang G, Haura EB (2010) Targeting epidermal growth factor receptor : central signaling kinase in lung cancer. Biochem Pharmacol 80:613–623. https://doi.org/10.1016/j.bcp.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  119. Woodburn J (1999) The epidermal growth factor receptor and its inhibition in Cancer therapy. Pharmacol Ther 82:241–250. https://doi.org/10.1016/S0163-7258(98)00045-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was developed with the support of the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors thank the High Performance Computing Center of the Universidade Estadual de Goiás (UEG).

Funding

CNPq, CAPES, and FAPEG.

Author information

Authors and Affiliations

Authors

Contributions

Introduction: P.R.S. Wenceslau, R.L.G. Paula, V.S. Duarte, G.D.C. D’Oliveira, L.M.M. Guimarães, C.N. Pérez, L.L. Borges, J.L.R. Martins, J.O. Fajemiroye, C.H.J. Franco, P.Perjesi and H.B. Napolitano;

Crystallographic analysis: P.R.S. Wenceslau, R.L.G. Paula, V.S. Duarte, D’Oliveira, C.N. Pérez and H.B. Napolitano;

Theoretical Analysis: V.S. Duarte, C.N. Pérez, and H.B. Napolitano;

In silico bioactivity screening: L.L. Borges, J.L.R. Martins, J.O. Fajemiroye, C.H.J. Franco, P.Perjesi and H.B. Napolitano;

Pharmacophore analysis: C.N. Pérez, L.L. Borges, J.L.R. Martins, J.O. Fajemiroye, C.H.J. Franco and P.Perjesi;

Molecular docking: P.R.S. Wenceslau, R.L.G. Paula, V.S. Duarte, G.D.C. D’Oliveira, L.M.M. Guimarães, C.N. Pérez, L.L. Borges, J.L.R. Martins, J.O. Fajemiroye, C.H.J. Franco, P.Perjesi and H.B. Napolitano.

Results and discussion: P.R.S. Wenceslau, R.L.G. Paula, V.S. Duarte, G.D.C. D’Oliveira, L.M.M. Guimarães, C.N. Pérez, L.L. Borges, J.L.R. Martins, J.O. Fajemiroye, C.H.J. Franco, P.Perjesi and H.B. Napolitano.

Conclusions: P.R.S. Wenceslau, R.L.G. Paula, V.S. Duarte, G.D.C. D’Oliveira, L.M.M. Guimarães, C.N. Pérez, L.L. Borges, J.L.R. Martins, J.O. Fajemiroye, C.H.J. Franco, P.Perjesi and H.B. Napolitano.

Corresponding author

Correspondence to Hamilton B. Napolitano.

Ethics declarations

Conflict of interes

No

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VIII Symposium on Electronic Structure and Molecular Dynamics – VIII SeedMol

Supplementary Information

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenceslau, P.R.S., de Paula, R.L.G., Duarte, V.S. et al. Insights on a new sulfonamide chalcone with potential antineoplastic application. J Mol Model 27, 211 (2021). https://doi.org/10.1007/s00894-021-04818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04818-w

Keywords

Navigation