Skip to main content

Probing the ground-state structural transition in small lithium clusters by quantum Monte Carlo simulations

Abstract

The ground-state structural transition in small lithium clusters Lin (n = 4 − 6) is analyzed based on the many-body expansion of the interaction energy using the total energy calculated by the fixed-node diffusion Monte Carlo (FN-DMC) simulations. The results show that the transition from 2D to 3D structure occurs through an intricate competition of attractive and repulsive interaction energies. As the structure dimensionality increases from 2D to 3D, the electron-correlation contribution to the interaction energy in the isomer of the ground-state structure is always the largest.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The calculations have been carried out using Gaussian03 and Casino code.

References

  1. 1.

    Bragg A., Verlet J., Kammrath A., Cheshnovsky O., Neumark D. (2004) Hydrated electron dynamics: From clusters to bulk. Science 306(5696):669

    CAS  Article  Google Scholar 

  2. 2.

    Gatteschi D., Caneschi A., Pardi L., Sessoli R. (1994) Large clusters of metal ions: the transition from molecular to bulk magnets. Science 265(5175):1054

    CAS  Article  Google Scholar 

  3. 3.

    Kawai R., Sung M., Weare J. (1992) Structural transition from small clusters to bulk-like structures. In: Physics and chemistry of finite systems: From clusters to crystals. Springer, pp 441–446

  4. 4.

    Ludwig R. (2001) Water: from clusters to the bulk. Angewandte Chemie International Edition 40(10):1808

    CAS  Article  Google Scholar 

  5. 5.

    Gafner S., Goloven’ko Z. V., Gafner Y. Y., Samsonov V., Kharechkin S., et al. (2009) Structural transitions in small nickel clusters. JETP Letters 89(7):364

    CAS  Article  Google Scholar 

  6. 6.

    Sakurai M., Souto-Casares J., Chelikowsky J.R. (2016) Size dependence of structural stability and magnetization of nickel clusters from real-space pseudopotentials. Physical Review B 94(2):024437

    Article  Google Scholar 

  7. 7.

    Ishizaki T., Yatsugi K., Akedo K. (2016) Effect of particle size on the magnetic properties of Ni nanoparticles synthesized with trioctylphosphine as the capping agent. Nanomaterials 6(9):172

    Article  Google Scholar 

  8. 8.

    Daudey J., Novaro O., Kolos W., Berrondo M. (1979) Convergence of multibody expansions for alkaline earth metals. Contrast between magnesium and beryllium clusters. The Journal of Chemical Physics 71(11):4297

    CAS  Article  Google Scholar 

  9. 9.

    Novaro O., Kolos W. (1977) Nonadditive effects in small beryllium clusters. The Journal of Chemical Physics 67(11):5066

    CAS  Article  Google Scholar 

  10. 10.

    Kaplan I., Santamaria R., Novaro O. (1995) Nonadditive interactions and the relative stability of neutral and anionic silver clusters. International Journal of Quantum Chemistry 55(3):237

    CAS  Article  Google Scholar 

  11. 11.

    Hartke B. (1993) Global geometry optimization of clusters using genetic algorithms. The Journal of Physical Chemistry 97(39):9973

    CAS  Article  Google Scholar 

  12. 12.

    Deaven D. M., Ho K. M. (1995) Molecular geometry optimization with a genetic algorithm. Physical Review Letters 75(2):288

    CAS  Article  Google Scholar 

  13. 13.

    Xiao Y., Williams D. E. (1993) Genetic algorithm: a new approach to the prediction of the structure of molecular clusters. Chemical Physics Letters 215(1-3):17

    CAS  Article  Google Scholar 

  14. 14.

    Alexandrova A. N., Boldyrev A. I., Fu Y. J., Yang X., Wang X. B., Wang L. S. (2004) Structure of the Nax Clx+ 1− (x = 1–4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. The Journal of Chemical Physics 121(12):5709

    CAS  Article  Google Scholar 

  15. 15.

    Heiles S., Johnston R. L. (2013) Global optimization of clusters using electronic structure methods. International Journal of Quantum Chemistry 113(18):2091

    CAS  Article  Google Scholar 

  16. 16.

    García-Prieto J., Feng W., Novaro O. (1984) Study of collective effects in the stability and chemisorption properties of finite lithium clusters. Surface Science 147(2-3):555

    Article  Google Scholar 

  17. 17.

    Kaplan I. G., Hernández-Cobos J., Ortega-Blake I., Novaro O. (1996) Many-body forces and electron correlation in small metal clusters. Physical Review A 53(4):2493

    CAS  Article  Google Scholar 

  18. 18.

    Brito B., Hai G.Q., Cândido L. (2019) Quantum Monte Carlo simulation for the many-body decomposition of the interaction energy and electron correlation of small superalkali lithium clusters. The Journal of Chemical Physics 151(1):014303

    CAS  Article  Google Scholar 

  19. 19.

    Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T. Jr., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. (2004) Gaussian 03, revision c.02. Gaussian inc., Wallingford

    Google Scholar 

  20. 20.

    Brito B., Cândido L., Rabelo J. T., Hai G. Q. (2014) Binding energies of small lithium clusters: a comparison of different theoretical calculations. Chemical Physical Letters 616: 212

    Article  Google Scholar 

  21. 21.

    Kolos W., Nieves F., Novaro O. (1976) The importance of non-additive terms in the interaction energy of tetrahedral Be4 clusters. Chemical Physics Letters 41(3):431

    CAS  Article  Google Scholar 

  22. 22.

    Needs R., Towler M., Drummond N., Lopez Rios P., Trail J. (2020) Variational and diffusion quantum Monte Carlo calculations with the CASINO code. The Journal of Chemical Physics 152(15):154106

    CAS  Article  Google Scholar 

  23. 23.

    Foulkes W., Mitas L., Needs R., Rajagopal G. (2001) Quantum Monte Carlo simulations of solids. Reviews of Modern Physics 73(1):33

    CAS  Article  Google Scholar 

  24. 24.

    Reynolds P. J., Ceperley D. M., Alder B. J., Lester W.A. Jr. (1982) Fixed-node quantum Monte Carlo for molecules. The Journal of Chemical Physics 77(11):5593

    CAS  Article  Google Scholar 

  25. 25.

    Feller D. (1993) The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. The Journal of Chemical Physics 98(9):7059

    CAS  Article  Google Scholar 

  26. 26.

    Bréchignac C., Busch H., Cahuzac P., Leygnier J. (1994) Dissociation pathways and binding energies of lithium clusters from evaporation experiments. The Journal of Chemical Physics 101(8):6992

    Article  Google Scholar 

  27. 27.

    Wu C. (1983) Experimental investigation of a stable lithium cluster. The thermochemical study of the molecule Li4. The Journal of Physical Chemistry 87(9):1534

    CAS  Article  Google Scholar 

  28. 28.

    Wu C. (1989) Thermochemical properties of the lithium cluster Li5. The Journal of Chemical Physics 91(1):546

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge computational resources from LaMCAD/UFG, and the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer.

Funding

This research receive founds from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG).

Author information

Affiliations

Authors

Contributions

B. G. A. Brito and E. L. Verde: formal analysis, investigation, methodology, writing original draft, visualization. G.-Q. Hai and L. Cândido: conceptualization, methodology, validation, writing, review and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to L. Cândido.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained from all participants.

Conflict of interest

The authors declare no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VIII Symposium on Electronic Structure and Molecular Dynamics – VIII SeedMol

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brito, B.G.A., Verde, E.L., Hai, GQ. et al. Probing the ground-state structural transition in small lithium clusters by quantum Monte Carlo simulations. J Mol Model 27, 207 (2021). https://doi.org/10.1007/s00894-021-04810-4

Download citation

Keywords

  • Lithium clusters
  • Structural transition
  • Electron correlation
  • Quantum Monte Carlo