Skip to main content
Log in

In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

N/A

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005). Nature 438:197–200

    Article  CAS  Google Scholar 

  2. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005). Nature 438:201–204

    Article  CAS  Google Scholar 

  3. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006). Science 312:1191–1196

    Article  CAS  Google Scholar 

  4. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009). Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  5. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006). Nature 442:282–286

    Article  CAS  Google Scholar 

  6. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008). Science 320:1308

    Article  CAS  Google Scholar 

  7. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006). Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  8. Geim AK, Novoselov KS (2007). Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  9. Wallace PR (1947). Phys Rev 71:622–634

    Article  CAS  Google Scholar 

  10. Reich ES (2014). Nature 506:19

    Article  Google Scholar 

  11. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tomanek D, Ye PD (2014). ACS Nano 8:4033–4041

    Article  CAS  Google Scholar 

  12. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014). Nat Nanotechnol 9:372–377

    Article  CAS  Google Scholar 

  13. Qiao J, Kong X, Hu Z-X, Yang F, Ji W (2014). Nat Commun 5:4475

    Article  CAS  Google Scholar 

  14. Zhu Z, Tomanek D (2014). Phys Rev Lett 112:176802

    Article  Google Scholar 

  15. Castellanos-Gomez A (2015). J Phys Chem Lett 6:4280–4291

    Article  CAS  Google Scholar 

  16. Jing Y, Tang Q, He P, Zhou Z, Shen P (2015). Nanotechnology 26:095201

    Article  CAS  Google Scholar 

  17. Ospina DA, Duque CA, Correa JD, Morell ES (2016). Superlattice Microst 97:562–568

    Article  CAS  Google Scholar 

  18. Guan J, Zhu Z, Tománek D (2014). Phys Rev Lett 113:046804

    Article  CAS  Google Scholar 

  19. Martínez Olmeda E, Vera CG, Fomine S (2018). Comput Theor Chem 1130:33–45

    Article  Google Scholar 

  20. Gorkan T, Kadioglu Y, Üzengi Aktürk O, Gökoğlu G, Aktürk E, Ciraci S (2019). J Phys Chem C 123:30704–30713

    Article  CAS  Google Scholar 

  21. Olmedo EM, de la Garza CGV, Fomine S (2019). J Mol Model 25:292

    Article  Google Scholar 

  22. Tao J, Perdew J, Staroverov V, Scuseria G (2003). Phys Rev Lett 91:146401

    Article  Google Scholar 

  23. Staroverov VN, Scuseria GE, Tao J, Jianmin J, Perdew P (2004). Phys Rev B 69:075102

    Article  Google Scholar 

  24. TURBOMOLE V7.2 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian I, Wallingford CT (2016) Gaussian 16, Revision A.03

  26. Pablo-Pedro R, Lopez-Rios H, Fomine S, Dresselhaus MS (2017). J Phys Chem Lett 8:615–620

    Article  CAS  Google Scholar 

  27. Lu T, Chen F (2012) Multiwfn: a multifunctional Wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  28. Liu Z, Lu T (2020). Carbon 165:461–467

    Article  CAS  Google Scholar 

  29. Torres AE, Flores R, Fomine S (2016). Synth Met 213:78–87

    Article  CAS  Google Scholar 

  30. Lin BC, Cheng CP, Lao ZPM (2003). J Phys Chem A 107:5241–5251

    Article  CAS  Google Scholar 

  31. Yeganeh M, Badieian Baghsiyahi F, Pilevar Shahri R (2019). Appl Phys A 125:545

    Article  CAS  Google Scholar 

  32. Head-Gordon M (2003). Chem Phys Lett 372:508–511

    Article  CAS  Google Scholar 

Download references

Code availability

N/A

Funding

W.E.V.N. received support from DGAPA of the UNAM under postdoctoral fellowship Grant No. CJIC/CTIC/4732/2O2O. Cesar Gabriel Vera de la Garza received doctoral fellowship grant 859569 from CONACyT. We received financial support from PAPIIT (IN201219/31) and from CONACyT (Grant 251684).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work, and all agree with the contents of the manuscript.

Corresponding author

Correspondence to Wilmer E. Vallejo Narváez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 2378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Garza, C.G.V., Rodriguez, L.D.S., Fomine, S. et al. In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms. J Mol Model 27, 171 (2021). https://doi.org/10.1007/s00894-021-04789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04789-y

Keywords

Navigation