Skip to main content

Modeling the aluminum-doped and single vacancy blue phosphorene interactions with molecules: a density functional theory study

Abstract

Structural, electronic, binding energies and magnetic properties of aluminum-doped and single vacancy blue phosphorene interacting with pollutant molecules are investigated using the density functional theory (DFT) with periodic boundary conditions. Acetylene, ozone, sulfur trioxide, hydrogen selenide, and sulfur dichloride molecules are considered to show the efficiency and enhancement of the sensing properties in comparison with the pristine blue phosphorene. Acetylene, sulfur trioxide, hydrogen selenide, and sulfur dichloride show chemisorption (> 0.5 eV/molecule) when interacting with the aluminum-doped system, but the ozone molecule dissociates in all configurations and symmetry sites. On the other hand, the acetylene, ozone, and sulfur trioxide with the single vacancy blue phosphorene exhibit chemisorption, the hydrogen selenide molecule exhibit a weak interaction energy, and the sulfur dichloride dissociates in all configurations and symmetry sites. In all the cases, the enhancement in the interaction energy was achieved when compared to other results for the same molecules. Finally, the single vacancy blue phosphorene shows a magnetic moment of ~1 μB/supercell, as induced by the vacancy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All the data present and use in this investigation are available.

Code availability

The SIESTA computational code is free access.

References

  1. 1.

    Yang C, Yang H, Guo S, Wang Z, Xu X, Duan X, Kan H (2012) Alternative ozone metrics and daily mortality in Suzhou: the China Air Pollution and Health Effects Study (CAPES). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2012.03.036

  2. 2.

    Chen CH, Chan CC, Chen BY, Cheng TJ, Guo YL (2015) Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environ Res. https://doi.org/10.1016/j.envres.2014.11.021

  3. 3.

    Cao Y, Zhou HC, Jiang W, Chen CW, Pan WP (2010) Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods. Environ Sci Technol. https://doi.org/10.1021/es903661b

  4. 4.

    Ahn J, Okerlund R, Fry A, Eddings EG (2011) Sulfur trioxide formation during oxy-coal combustion. Int J Greenhouse Gas Control. https://doi.org/10.1016/j.ijggc.2011.05.009

  5. 5.

    Budavari S et al (1996) The Merck index13th edn. Merck & Co. Inc., Whitehouse Station, p 948

    Google Scholar 

  6. 6.

    Pohanish RJ (2017) Sittig’s handbook of toxic and hazardous chemicals and carcinogens. William Andrew

  7. 7.

    Liang H, Avachat U, Liu W, van Duren J, Le M (2012) CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere. Solid State Electron. https://doi.org/10.1016/j.sse.2012.05.055

  8. 8.

    Wang K-C, Hsu H-R, Chen H-S (2017) Study of surface sulfurization of Cu2ZnSn (S,Se)4 thin films solar cell by sequential H2Se-selenization/H2S-sulfurization. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2017.01.012

  9. 9.

    Cremlyn RJW, Cremlyn RJ (1996) An introduction to organosulfur chemistry, vol 8. Wiley, New York

    Google Scholar 

  10. 10.

    Martins TB, Miwa RH, da Silva AJR, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.98.196803

  11. 11.

    Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. https://doi.org/10.1021/nl072090c

  12. 12.

    Oughaddou H, Enriquez H, Tchalala MR, Yildirim H, Mayne AJ, Bendounan A, Dujardin G, Ali MA, Kara A (2015) Silicene, a promising new 2D material. Prog Surf Sci https://ui.adsabs.harvard.edu/link_gateway/2015PrSS...90...46O/doi:10.1016/j.progsurf.2014.12.003

  13. 13.

    Lu AJ, Yang XB, Zhang RQ (2009) Electronic and optical properties of single-layered silicon sheets. Solid State Commun. https://doi.org/10.1016/j.ssc.2008.10.039

  14. 14.

    Cahangirov S, Topsakal M, Artürk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.236804

  15. 15.

    Dávila ME, Xian L, Cahangirov S, Rubio A, Lay GL (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys. https://doi.org/10.1088/1367-2630/16/9/095002

  16. 16.

    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2015) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. https://doi.org/10.1021/nn501226z

  17. 17.

    Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun. https://doi.org/10.1038/ncomms5458

  18. 18.

    Zhang R, Li B, Yang J (2014) A first-principle study on electron donor and acceptor molecules adsorbed on phosphorene. J Phys Chem C. https://doi.org/10.1021/jp5116564

  19. 19.

    Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.112.176802

  20. 20.

    Guan J, Zhu Z, Tománek D (2014) Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.113.046804

  21. 21.

    Guan J, Zhu Z, Tománek D (2014) Tiling phosphorene. ACS Nano. https://doi.org/10.1021/nn5059248

  22. 22.

    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter

  23. 23.

    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.92.246401

  24. 24.

    Klimes J, Bowler DR, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/22/2/022201

  25. 25.

    Ding Y, Wang Y (2015) Structural, electronic, and magnetic properties of adatom adsorption on black and blue phosphorene: a first-principle study. J Phys Chem C. https://doi.org/10.1021/jp5114152

  26. 26.

    Khan I, Son J, Hong J (2018) Metal adsorption on monolayer blue phosphorene: a first principles study. Phys Lett A. https://doi.org/10.1016/j.physleta.2017.11.008

  27. 27.

    Sun M, Hao Y, Ren Q, Zhao Y, Du Y, Tang W (2016) Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: a DFT calculation. Solid State Commun. https://doi.org/10.1016/j.ssc.2016.04.019

  28. 28.

    Safari F, Moradinasab M, Fathipour M, Kosina H (2019) Adsorption of the NH3, NO, NO2, CO2 and CO gas molecules on blue phosphorene: a first-principle study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.09.048

  29. 29.

    Abbasi A, Sardroodi JJ (2019) The adsorption of sulfur trioxide and ozone molecules on stanine nanosheets investigated by DFT: applications to gas sensor devices. Phys E: Low-dim Syst Nanostruct https://ui.adsabs.harvard.edu/link_gateway/2019PhyE..108..382A/doi:10.1016/j.physe.2018.05.004

  30. 30.

    Liu N, Zhou S (2017) Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology. https://doi.org/10.1088/1361-6528/aa6614

  31. 31.

    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. https://doi.org/10.1080/00268977000101561

  32. 32.

    Xantheas SS (1996) On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error corrections to the intermolecular interaction energy. J Chem Phys. https://doi.org/10.1063/1.471605

  33. 33.

    Hobbs C, Kantorovich L, Gale J (2005) An ab initio study of C60 adsorption on the Si (001) surface. Surf Sci. https://doi.org/10.1016/j.susc.2005.06.038

  34. 34.

    Safari F, Fathipour M, Goharrizi AY (2018) Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first principles study. J Comput Electron. https://doi.org/10.1007/s10825-018-1159-z

  35. 35.

    Sun M, Chou JP, Hu A, Schwingenschlögl U (2019) Point defects in blue phosphorene. Chem Mater. https://doi.org/10.1021/acs.chemmater.9b02871

  36. 36.

    Safari F, Fathipour M, Goharrizi AY (2020) Electronic and transport properties of blue phosphorene in presence of point defects: a first-principles study. Phys E: Low-dim Syst Nanostruct. https://doi.org/10.1016/j.physe.2019.113938

  37. 37.

    Srivastava P, Hembram KPSS, Mizuseki H, Lee KR, Han SS, Kim S (2019) Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J Phys Chem C. https://doi.org/10.1021/jp5110938

  38. 38.

    Corona-García CA, Cocoletzi GH, Ochoa FS (2021) Adsorption of small pollutant molecules on monolayer blue phosphorus. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2021.102123

  39. 39.

    Gui Y, Peng X, Liu K, Ding Z (2020) Adsorption of C2H2, CH4 and CO on Mn-doped graphene: atomic, electronic, and gas-sensing properties. Phys E. https://doi.org/10.1016/j.physe.2020.113959

  40. 40.

    Mao Z, Dong S, Li J, Lin X, Jian X, Wu P (2020) Hittorf’s violet phosphorene as a promising candidate for NO2, O3 and SO2 sensor: a first principles investigations. Solid State Commun. https://doi.org/10.1016/j.ssc.2020.113928

  41. 41.

    Abbasi A, Sardroodi JJ (2019) Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: a computational investigation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.11.039

  42. 42.

    Ranea VA, Dammig PL, Qui NA, Yalet NM (2019) General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5(001) surface including the van deer Waals interaction. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2019.02.013

  43. 43.

    Salih E, Ayesh AI (2020) First principle investigation of H2Se, H2Te and PH3 sensing based on graphene oxide. Phys Lett A. https://doi.org/10.1016/j.physleta.2020.126775

Download references

Acknowledgements

The authors thankfully acknowledge the computer resources, technical expertise, and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México, CONACYT member of the network of national laboratories. A.C. Martínez-Olguín thanks CONACYT for the scholarship No. 289167. C.A Corona-García thanks CONACYT for the scholarship No. 291236.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. A. Corona-García.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2027 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corona-García, C.A., Martínez-Olguín, A.C., Sánchez-Ochoa, F. et al. Modeling the aluminum-doped and single vacancy blue phosphorene interactions with molecules: a density functional theory study. J Mol Model 27, 141 (2021). https://doi.org/10.1007/s00894-021-04772-7

Download citation

Keywords

  • Defects on monolayer blue phosphorene
  • Aluminum doped
  • Single vacancy
  • Tuning magnetic properties
  • Computer simulation
  • Density functional theory